हिंदी

1 + 4 + 13 + 40 + 121 + ... - Mathematics

Advertisements
Advertisements

प्रश्न

1 + 4 + 13 + 40 + 121 + ...

उत्तर

Let \[T_n\] be the nth term and \[S_n\] be the sum to n terms of the given series.
Thus, we have:

\[S_n = 1 + 4 + 13 + 40 + 121 + . . . + T_{n - 1} + T_n\]   ...(1)

Equation (1) can be rewritten as:

\[S_n = 1 + 4 + 13 + 40 + 121 + . . . + T_{n - 1} + T_n\] ...(2)

On subtracting (2) from (1), we get:

\[S_n = 1 + 4 + 13 + 40 + 121 + . . . + T_{n - 1} + T_n \]

\[ S_n = 1 + 4 + 13 + 40 + 121 + . . . + T_{n - 1} + T_n \]

____________________________________________________

\[ 0 = 1 + \left[ 3 + 9 + 27 + 81 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]

The sequence of difference between successive terms is 3, 9, 27, 81,...
We observe that it is a GP with common ratio 3 and first term 3.
Thus, we have:

\[1 + \left[ \frac{3\left( 3^{n - 1} - 1 \right)}{3 - 1} \right] - T_n = 0\]

\[ \Rightarrow 1 + \left[ \frac{\left( 3^n - 3 \right)}{2} \right] - T_n = 0\]

\[ \Rightarrow \left( \frac{3^n}{2} - \frac{1}{2} \right) - T_n = 0\]

\[ \Rightarrow \left( \frac{3^n}{2} - \frac{1}{2} \right) = T_n\]

\[\because S_n = \sum^n_{k = 1} T_k \]

\[ \therefore S_n = \sum^n_{k = 1} \left( \frac{3^k}{2} - \frac{1}{2} \right)\]

\[ \Rightarrow S_n = \frac{1}{2} \sum^n_{k = 1} 3^k - \frac{1}{2} \sum^n_{k = 1} 1\]

\[ \Rightarrow S_n = \frac{1}{2}\left( 3 + 3^2 + 3^3 + 3^4 + 3^5 + . . . + 3^n \right) - \frac{n}{2}\]

\[ \Rightarrow S_n = \frac{1}{2}\left[ \frac{3\left( 3^n - 1 \right)}{2} \right] - \frac{n}{2}\]

\[ \Rightarrow S_n = \left( \frac{3^{n + 1} - 3}{4} \right) - \frac{n}{2}\]

\[ \Rightarrow S_n = \left( \frac{3^{n + 1} - 3 - 2n}{4} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Some special series - Exercise 21.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 21 Some special series
Exercise 21.2 | Q 6 | पृष्ठ १८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...


Find the sum of the series whose nth term is:

n3 − 3n


1 + 3 + 7 + 13 + 21 + ...


1 + 3 + 6 + 10 + 15 + ...


4 + 6 + 9 + 13 + 18 + ...


2 + 4 + 7 + 11 + 16 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


The value of  \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


The sum of the series 12 + 32 + 52 + ... to n terms is 


The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.


3 + 5 + 9 + 15 + 23 + ...

 

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×