Advertisements
Advertisements
प्रश्न
The sum of the series 12 + 32 + 52 + ... to n terms is
विकल्प
\[\frac{n (n + 1) (2n + 1)}{2}\]
\[\frac{n (2n - 1) (2n + 1)}{3}\]
\[\frac{(n - 1 )^2 (2n + 1)}{6}\]
\[\frac{(2n + 1 )^3}{3}\]
उत्तर
\[\frac{n (2n - 1) (2n + 1)}{3}\]
Let \[T_n\] be the nth term of the given series.
Thus, we have:
\[T_n = \left( 2n - 1 \right)^2 = 4 n^2 + 1 - 4n\]
Now, let
\[S_n\] be the sum of n terms of the given series.
Thus, we have:
\[S_n = \sum^n_{k = 1} \left( 4 k^2 + 1 - 4k \right)\]
\[ \Rightarrow S_n = {4\sum}^n_{k = 1} k^2 + \sum 1^n_{k = 1} - 4 \sum^n_{k = 1} k\]
\[ \Rightarrow S_n = \frac{4n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + n - \frac{4n\left( n + 1 \right)}{2}\]
\[ \Rightarrow S_n = \frac{2n\left( n + 1 \right)\left( 2n + 1 \right)}{3} + n - 2n\left( n + 1 \right)\]
\[ \Rightarrow S_n = n\left[ \frac{2\left( n + 1 \right)\left( 2n + 1 \right)}{3} + 1 - 2\left( n + 1 \right) \right]\]
\[ \Rightarrow S_n = \frac{n}{3}\left[ \left( 2n + 2 \right)\left( 2n + 1 \right) + 3 - 6\left( n + 1 \right) \right]\]
\[ \Rightarrow S_n = \frac{n}{3}\left[ \left( 4 n^2 - 1 \right) \right]\]
\[ \Rightarrow S_n = \frac{n\left( 2n - 1 \right)\left( 2n + 1 \right)}{3}\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
13 + 33 + 53 + 73 + ...
1.2.5 + 2.3.6 + 3.4.7 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
Find the sum of the series whose nth term is:
(2n − 1)2
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
1 + 3 + 7 + 13 + 21 + ...
3 + 7 + 14 + 24 + 37 + ...
1 + 3 + 6 + 10 + 15 + ...
2 + 4 + 7 + 11 + 16 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
If ∑ n = 210, then ∑ n2 =
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.
Let Sn(x) = `log_a 1/2 x + log_a 1/3 x + log_a 1/6 x + log_a 1/11 x + log_a 1/18 x + log_a 1/27x + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.