Advertisements
Advertisements
प्रश्न
1.2.4 + 2.3.7 +3.4.10 + ...
उत्तर
Let \[T_n\] be the nth term of the given series.
Thus, we have: \[T_n = n\left( n + 1 \right)\left( 3n + 1 \right) = n\left( 3 n^2 + 4n + 1 \right) = \left( 3 n^3 + 4 n^2 + n \right)\]
Now, let
\[S_n\] be the sum of n terms of the given series.
Thus, we have:
\[S_n = \sum^n_{k = 1} T_k\]
\[\Rightarrow S_n = \sum 3^n_{k = 1} k^3 + \sum 4^n_{k = 1} k^2 + \sum^n_{k = 1} k \]
\[ \Rightarrow S_n = 3 \sum^n_{k = 1} k^3 + {4\sum}^n_{k = 1} k^2 + \sum^n_{k = 1} k \]
\[ \Rightarrow S_n = \frac{3 n^2 \left( n + 1 \right)^2}{4} + \frac{4n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + \frac{n\left( n + 1 \right)}{2}\]
\[ \Rightarrow S_n = \frac{3 n^2 \left( n + 1 \right)^2}{4} + \frac{2n\left( n + 1 \right)\left( 2n + 1 \right)}{3} + \frac{n\left( n + 1 \right)}{2}\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{3n\left( n + 1 \right)}{2} + \frac{4\left( 2n + 1 \right)}{3} + 1 \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{3 n^2 + 3n}{2} + \frac{8n + 4}{3} + 1 \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{9 n^2 + 9n + 16n + 8 + 6}{6} \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{12}\left( 9 n^2 + 25n + 14 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
1.2.5 + 2.3.6 + 3.4.7 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Find the sum of the series whose nth term is:
(2n − 1)2
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
1 + 3 + 7 + 13 + 21 + ...
4 + 6 + 9 + 13 + 18 + ...
If ∑ n = 210, then ∑ n2 =
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
Write the sum to n terms of a series whose rth term is r + 2r.
2 + 5 + 10 + 17 + 26 + ...
Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.