Advertisements
Advertisements
प्रश्न
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
उत्तर
Let \[T_n\] be the nth term of the given series.
Thus, we have:
\[T_n = n\left( n + 1 \right)\left( n + 4 \right) = \left( n^2 + n \right)\left( n + 4 \right) = n^3 + 5 n^2 + 4n\]
Let
\[S_n\] be the sum of n terms of the given series.
Now,
\[S_n = \sum^n_{k = 1} T_k\]
\[\Rightarrow S_n = \sum^n_{k = 1} \left( k^3 + 5 k^2 + 4k \right)\]
\[ \Rightarrow S_n = \sum^n_{k = 1} k^3 + {5\sum}^n_{k = 1} k^2 + 4 \sum^n_{k = 1} k\]
\[ \Rightarrow S_n = \frac{n^2 \left( n + 1 \right)^2}{4} + \frac{5n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + \frac{4n\left( n + 1 \right)}{2}\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left[ \frac{n\left( n + 1 \right)}{2} + \frac{5\left( 2n + 1 \right)}{3} + 4 \right]\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{12}\left[ 3n\left( n + 1 \right) + 10\left( 2n + 1 \right) + 24 \right]\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{12}\left( 3 n^2 + 23n + 34 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
22 + 42 + 62 + 82 + ...
1.2.5 + 2.3.6 + 3.4.7 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the sum of the series whose nth term is:
(2n − 1)2
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
3 + 7 + 14 + 24 + 37 + ...
1 + 3 + 6 + 10 + 15 + ...
1 + 4 + 13 + 40 + 121 + ...
2 + 4 + 7 + 11 + 16 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
Write the sum to n terms of a series whose rth term is r + 2r.
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
2 + 5 + 10 + 17 + 26 + ...
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
Let Sn(x) = `log_a 1/2 x + log_a 1/3 x + log_a 1/6 x + log_a 1/11 x + log_a 1/18 x + log_a 1/27x + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.