हिंदी

Find the Sum of the Series Whose Nth Term Is: N (N + 1) (N + 4) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the series whose nth term is:

n (n + 1) (n + 4)

उत्तर

Let \[T_n\] be the nth term of the given series.
Thus, we have:

\[T_n = n\left( n + 1 \right)\left( n + 4 \right) = \left( n^2 + n \right)\left( n + 4 \right) = n^3 + 5 n^2 + 4n\]

Let

\[S_n\] be the sum of n terms of the given series.
Now, 

\[S_n = \sum^n_{k = 1} T_k\]

\[\Rightarrow S_n = \sum^n_{k = 1} \left( k^3 + 5 k^2 + 4k \right)\]

\[ \Rightarrow S_n = \sum^n_{k = 1} k^3 + {5\sum}^n_{k = 1} k^2 + 4 \sum^n_{k = 1} k\]

\[ \Rightarrow S_n = \frac{n^2 \left( n + 1 \right)^2}{4} + \frac{5n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + \frac{4n\left( n + 1 \right)}{2}\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left[ \frac{n\left( n + 1 \right)}{2} + \frac{5\left( 2n + 1 \right)}{3} + 4 \right]\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{12}\left[ 3n\left( n + 1 \right) + 10\left( 2n + 1 \right) + 24 \right]\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{12}\left( 3 n^2 + 23n + 34 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Some special series - Exercise 21.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 21 Some special series
Exercise 21.1 | Q 8.4 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


22 + 42 + 62 + 82 + ...


1.2.5 + 2.3.6 + 3.4.7 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

(2n − 1)2


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


3 + 7 + 14 + 24 + 37 + ...


1 + 3 + 6 + 10 + 15 + ...


1 + 4 + 13 + 40 + 121 + ...


2 + 4 + 7 + 11 + 16 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

Write the sum to n terms of a series whose rth term is r + 2r.

 

If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.


2 + 5 + 10 + 17 + 26 + ...

 

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×