Advertisements
Advertisements
प्रश्न
1.2.5 + 2.3.6 + 3.4.7 + ...
उत्तर
Let \[T_n\] be the nth term of the given series.
Thus, we have:
\[T_n = n\left( n + 1 \right)\left( n + 4 \right)\]
\[ = n\left( n^2 + 5n + 4 \right)\]
\[ = \left( n^3 + 5 n^2 + 4n \right)\]
Now, let \[S_n\] be the sum of n terms of the given series.
Thus, we have: \[S_n = \sum^n_{k = 1} T_k\]
\[\Rightarrow S_n = \sum^n_{k = 1} k^3 + \sum 5^n_{k = 1} k^2 + \sum 4^n_{k = 1} k \]
\[ \Rightarrow S_n = \sum^n_{k = 1} k^3 + {5\sum}^n_{k = 1} k^2 + {4\sum}^n_{k = 1} k \]
\[ \Rightarrow S_n = \frac{n^2 \left( n + 1 \right)^2}{4} + \frac{5n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + \frac{4n\left( n + 1 \right)}{2}\]
\[ \Rightarrow S_n = \frac{n^2 \left( n + 1 \right)^2}{4} + \frac{5n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + 2n\left( n + 1 \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{n\left( n + 1 \right)}{2} + \frac{5\left( 2n + 1 \right)}{3} + 4 \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{n^2 + n}{2} + \frac{10n + 5}{3} + 4 \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{3 n^2 + 3n + 20n + 10 + 24}{6} \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{12}\left( 3 n^2 + 23n + 34 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
13 + 33 + 53 + 73 + ...
22 + 42 + 62 + 82 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
1 + 3 + 7 + 13 + 21 + ...
1 + 3 + 6 + 10 + 15 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
If ∑ n = 210, then ∑ n2 =
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
Write the sum to n terms of a series whose rth term is r + 2r.
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
3 + 5 + 9 + 15 + 23 + ...
2 + 5 + 10 + 17 + 26 + ...
Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.