Advertisements
Advertisements
प्रश्न
13 + 33 + 53 + 73 + ...
उत्तर
Let \[T_n\] be the nth term of the given series.
Thus, we have: \[T_n = \left( 2n - 1 \right)^3\]
Now, let \[S_n\] be the sum of n terms of the given series.
Thus, we have:
\[S_n = \sum^n_{k = 1} T_k \]
\[ = \sum^n_{k = 1} \left[ 2k - 1 \right]^3 \]
\[ = \sum^n_{k = 1} \left[ 8 k^3 - 1 - 6k\left( 2k - 1 \right) \right]\]
\[ = \sum^n_{k = 1} \left[ 8 k^3 - 1 - 12 k^2 + 6k \right]\]
\[ = \sum^n_{k = 1} \left[ 8 k^3 - 1 - 12 k^2 + 6k \right]\]
\[ = {8\sum}^n_{k = 1} k^3 - \sum^n_{k = 1} 1 - 12 \sum^n_{k = 1} k^2 + {6\sum}^n_{k = 1} k \]
\[ = \frac{8 n^2 \left( n + 1 \right)^2}{4} - n - \frac{12n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + \frac{6 n\left( n + 1 \right)}{2}\]
\[ = 2 n^2 \left( n + 1 \right)^2 - n - 2n\left( n + 1 \right)\left( 2n + 1 \right) + 3n\left( n + 1 \right)\]
\[ = n\left( n + 1 \right)\left[ 2n\left( n + 1 \right) - 2\left( 2n + 1 \right) + 3 \right] - n\]
\[ = n\left( n + 1 \right)\left[ 2 n^2 - 2n + 1 \right] - n\]
\[ = n\left[ 2 n^3 - 2 n^2 + n + 2 n^2 - 2n + 1 - 1 \right]\]
\[ = n\left[ 2 n^3 - n \right]\]
\[ = n^2 \left[ 2 n^2 - 1 \right]\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
22 + 42 + 62 + 82 + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
1 + 3 + 7 + 13 + 21 + ...
1 + 3 + 6 + 10 + 15 + ...
1 + 4 + 13 + 40 + 121 + ...
2 + 4 + 7 + 11 + 16 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
If ∑ n = 210, then ∑ n2 =
Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .
The sum of the series
\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of the series 12 + 32 + 52 + ... to n terms is
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
Write the sum to n terms of a series whose rth term is r + 2r.
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
2 + 5 + 10 + 17 + 26 + ...
Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.