Advertisements
Advertisements
प्रश्न
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
विकल्प
\[\frac{n (n + 3)}{4}\]
\[\frac{n (n + 2)}{4}\]
\[\frac{n (n + 1) (n + 2)}{6}\]
n2
उत्तर
\[\frac{n (n + 3)}{4}\]
Let \[T_n\] be the nth term of the given series.
Thus, we have:
\[T_n = \frac{1 + 2 + 3 + 4 + 5 + . . . + n}{n} = \frac{n\left( n + 1 \right)}{2n} = \frac{n}{2} + \frac{1}{2}\]
Now, let
Thus, we have:
\[S_n = \sum^n_{k = 1} \left( \frac{k}{2} + \frac{1}{2} \right)\]
\[ \Rightarrow S_n = \sum^n_{k = 1} \frac{k}{2} + \frac{n}{2}\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{4} + \frac{n}{2}\]
\[ \Rightarrow S_n = \frac{n}{2}\left( \frac{n + 1}{2} + 1 \right)\]
\[ \Rightarrow S_n = \frac{n}{2}\left( \frac{n + 3}{2} \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 3 \right)}{4}\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
22 + 42 + 62 + 82 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the sum of the series whose nth term is:
n3 − 3n
Find the sum of the series whose nth term is:
(2n − 1)2
1 + 3 + 7 + 13 + 21 + ...
1 + 3 + 6 + 10 + 15 + ...
4 + 6 + 9 + 13 + 18 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .
The sum of the series
\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of the series 12 + 32 + 52 + ... to n terms is
2 + 5 + 10 + 17 + 26 + ...
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.