Advertisements
Advertisements
प्रश्न
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
विकल्प
2n − n − 1
\[1 - \frac{1}{2^n}\]
\[n - 1 + \frac{1}{2^n}\]
2n − 1
उत्तर
\[n - 1 + \frac{1}{2^n}\]
We have:
Sn
\[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { sum to r terms }}{2^r}\]
\[ \Rightarrow S_n = \sum^n_{r = 1} \frac{1\left( 2^r - 1 \right)}{2^r}\]
\[ \Rightarrow S_n = \sum^n_{r = 1} \left( 1 - \frac{1}{2^r} \right)\]
\[ \Rightarrow S_n = n - \sum^n_{r = 1} \left( \frac{1}{2^r} \right)\]
\[ \Rightarrow S_n = n - \left[ \frac{\left( \frac{1}{2} \right)\left\{ 1 - \left( \frac{1}{2} \right)^n \right\}}{1 - \frac{1}{2}} \right]\]
\[ \Rightarrow S_n = n - \left[ 1 - \left( \frac{1}{2} \right)^n \right]\]
\[ \Rightarrow S_n = n - 1 + \frac{1}{2^n}\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
22 + 42 + 62 + 82 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
Find the sum of the series whose nth term is:
n3 − 3n
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
1 + 3 + 6 + 10 + 15 + ...
4 + 6 + 9 + 13 + 18 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .
The sum of the series
\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of the series 12 + 32 + 52 + ... to n terms is
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
2 + 5 + 10 + 17 + 26 + ...
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.
Let Sn(x) = `log_a 1/2 x + log_a 1/3 x + log_a 1/6 x + log_a 1/11 x + log_a 1/18 x + log_a 1/27x + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.