Advertisements
Advertisements
प्रश्न
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
उत्तर
Let \[T_n\] be the nth term of the given series.
Thus, we have:
\[T_n = 2 n^3 + 3 n^2 - 1\]
Let \[S_n\] be the sum of n terms of the given series.
Now,
\[S_n = \sum^n_{k = 1} T_k\]
\[\Rightarrow S_n = \sum^n_{k = 1} \left( 2 k^3 + 3 k^2 - 1 \right)\]
\[ \Rightarrow S_n = {2\sum}^n_{k = 1} k^3 + 3 \sum^n_{k = 1} k^2 - \sum^n_{k = 1} 1\]
\[ \Rightarrow S_n = \frac{2 n^2 \left( n + 1 \right)^2}{4} + \frac{3n\left( n + 1 \right)\left( 2n + 1 \right)}{6} - n\]
\[ \Rightarrow S_n = \frac{n^2 \left( n + 1 \right)^2}{2} + \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{2} - n\]
\[ \Rightarrow S_n = \frac{n^2 \left( n + 1 \right)^2 + n\left( n + 1 \right)\left( 2n + 1 \right) - 2n}{2}\]
\[ \Rightarrow S_n = \frac{n^2 \left( n^2 + 1 + 2n \right) + \left( n^2 + n \right)\left( 2n + 1 \right) - 2n}{2}\]
\[ \Rightarrow S_n = \frac{\left( n^4 + n^2 + 2 n^3 \right) + \left( 2 n^3 + n^2 + 2 n^2 + n \right) - 2n}{2}\]
\[ \Rightarrow S_n = \frac{n^4 + 4 n^2 + 4 n^3 - n}{2}\]
\[ \Rightarrow S_n = \frac{n\left( n^3 + 4n + 4 n^2 - 1 \right)}{2}\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
13 + 33 + 53 + 73 + ...
22 + 42 + 62 + 82 + ...
1.2.5 + 2.3.6 + 3.4.7 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
1 + 3 + 7 + 13 + 21 + ...
3 + 7 + 14 + 24 + 37 + ...
1 + 3 + 6 + 10 + 15 + ...
1 + 4 + 13 + 40 + 121 + ...
2 + 4 + 7 + 11 + 16 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
If ∑ n = 210, then ∑ n2 =
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
The sum of the series
\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
3 + 5 + 9 + 15 + 23 + ...
2 + 5 + 10 + 17 + 26 + ...
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.