Advertisements
Advertisements
प्रश्न
3 + 7 + 14 + 24 + 37 + ...
उत्तर
Let \[T_n\] be the nth term and \[S_n\] be the sum of n terms of the given series.
Thus, we have: \[S_n = 3 + 7 + 14 + 24 + 37 + . . . + T_{n - 1} + T_n\] ...(1)
Equation (1) can be rewritten as:
\[S_n = 3 + 7 + 14 + 24 + 37 + . . . + T_{n - 1} + T_n\] ...(2)
On subtracting (2) from (1), we get:
\[S_n = 3 + 7 + 14 + 24 + 37 + . . . + T_{n - 1} + T_n \]
\[ S_n = 3 + 7 + 14 + 24 + 37 + . . . + T_{n - 1} + T_n \]
______________________________________________________
\[0 = 3 + \left[ 4 + 7 + 10 + 13 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]
The sequence of difference of successive terms is 4, 7, 10, 13,...
We observe that it is an AP with common difference 3 and first term 4.
Thus, we have:
\[3 + \left[ \frac{\left( n - 1 \right)}{2}\left\{ 8 + \left( n - 2 \right)3 \right\} \right] - T_n = 0\]
\[ \Rightarrow 3 + \left[ \frac{\left( n - 1 \right)}{2}\left( 3n + 2 \right) \right] - T_n = 0\]
\[ \Rightarrow \left[ \frac{3 n^2 - n + 4}{2} \right] = T_n \]
\[ \Rightarrow \left[ \frac{3}{2} n^2 - \frac{n}{2} + 2 \right] = T_n\]
Now,
\[\because S_n = \sum^n_{k = 1} T_k \]
\[ \therefore S_n = \sum^n_{k = 1} \left( \frac{3}{2} k^2 - \frac{k}{2} + 2 \right) \]
\[ \Rightarrow S_n = \frac{3}{2} \sum^n_{k = 1} k^2 + \sum^n_{k = 1} 2 - \frac{1}{2} \sum^n_{k = 1} k\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{4} + 2n - \frac{n\left( n + 1 \right)}{4}\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n \right) + 8n}{4}\]
\[ \Rightarrow S_n = \frac{\left( n + 1 \right)\left( 2 n^2 \right) + 8n}{4}\]
\[ \Rightarrow S_n = \frac{n}{2}\left[ n\left( n + 1 \right) + 4 \right]\]
\[ \Rightarrow S_n = \frac{n}{2}\left[ n^2 + n + 4 \right]\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
13 + 33 + 53 + 73 + ...
22 + 42 + 62 + 82 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
Find the sum of the series whose nth term is:
n3 − 3n
Find the sum of the series whose nth term is:
(2n − 1)2
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
If ∑ n = 210, then ∑ n2 =
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
The sum of the series 12 + 32 + 52 + ... to n terms is
Write the sum to n terms of a series whose rth term is r + 2r.
3 + 5 + 9 + 15 + 23 + ...
2 + 5 + 10 + 17 + 26 + ...
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
Let Sn(x) = `log_a 1/2 x + log_a 1/3 x + log_a 1/6 x + log_a 1/11 x + log_a 1/18 x + log_a 1/27x + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.