Advertisements
Advertisements
Question
3 + 7 + 14 + 24 + 37 + ...
Solution
Let \[T_n\] be the nth term and \[S_n\] be the sum of n terms of the given series.
Thus, we have: \[S_n = 3 + 7 + 14 + 24 + 37 + . . . + T_{n - 1} + T_n\] ...(1)
Equation (1) can be rewritten as:
\[S_n = 3 + 7 + 14 + 24 + 37 + . . . + T_{n - 1} + T_n\] ...(2)
On subtracting (2) from (1), we get:
\[S_n = 3 + 7 + 14 + 24 + 37 + . . . + T_{n - 1} + T_n \]
\[ S_n = 3 + 7 + 14 + 24 + 37 + . . . + T_{n - 1} + T_n \]
______________________________________________________
\[0 = 3 + \left[ 4 + 7 + 10 + 13 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]
The sequence of difference of successive terms is 4, 7, 10, 13,...
We observe that it is an AP with common difference 3 and first term 4.
Thus, we have:
\[3 + \left[ \frac{\left( n - 1 \right)}{2}\left\{ 8 + \left( n - 2 \right)3 \right\} \right] - T_n = 0\]
\[ \Rightarrow 3 + \left[ \frac{\left( n - 1 \right)}{2}\left( 3n + 2 \right) \right] - T_n = 0\]
\[ \Rightarrow \left[ \frac{3 n^2 - n + 4}{2} \right] = T_n \]
\[ \Rightarrow \left[ \frac{3}{2} n^2 - \frac{n}{2} + 2 \right] = T_n\]
Now,
\[\because S_n = \sum^n_{k = 1} T_k \]
\[ \therefore S_n = \sum^n_{k = 1} \left( \frac{3}{2} k^2 - \frac{k}{2} + 2 \right) \]
\[ \Rightarrow S_n = \frac{3}{2} \sum^n_{k = 1} k^2 + \sum^n_{k = 1} 2 - \frac{1}{2} \sum^n_{k = 1} k\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{4} + 2n - \frac{n\left( n + 1 \right)}{4}\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n \right) + 8n}{4}\]
\[ \Rightarrow S_n = \frac{\left( n + 1 \right)\left( 2 n^2 \right) + 8n}{4}\]
\[ \Rightarrow S_n = \frac{n}{2}\left[ n\left( n + 1 \right) + 4 \right]\]
\[ \Rightarrow S_n = \frac{n}{2}\left[ n^2 + n + 4 \right]\]
APPEARS IN
RELATED QUESTIONS
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
13 + 33 + 53 + 73 + ...
1.2.5 + 2.3.6 + 3.4.7 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
1 + 3 + 7 + 13 + 21 + ...
2 + 4 + 7 + 11 + 16 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
If ∑ n = 210, then ∑ n2 =
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
The sum of the series
\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
Write the sum to n terms of a series whose rth term is r + 2r.
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
3 + 5 + 9 + 15 + 23 + ...
2 + 5 + 10 + 17 + 26 + ...
Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.