English

If 1 + 1 + 2 2 + 1 + 2 + 3 3 + . . . . to N Terms is S, Then S is Equal to - Mathematics

Advertisements
Advertisements

Question

If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to

Options

  • \[\frac{n (n + 3)}{4}\]

  • \[\frac{n (n + 2)}{4}\]

  • \[\frac{n (n + 1) (n + 2)}{6}\]

  •  n2

MCQ

Solution

\[\frac{n (n + 3)}{4}\]

Let \[T_n\] be the nth term of the given series.
Thus, we have:

\[T_n = \frac{1 + 2 + 3 + 4 + 5 + . . . + n}{n} = \frac{n\left( n + 1 \right)}{2n} = \frac{n}{2} + \frac{1}{2}\]

Now, let

\[S_n\]  be the sum of n terms of the given series.
Thus, we have:

\[S_n = \sum^n_{k = 1} \left( \frac{k}{2} + \frac{1}{2} \right)\]

\[ \Rightarrow S_n = \sum^n_{k = 1} \frac{k}{2} + \frac{n}{2}\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{4} + \frac{n}{2}\]

\[ \Rightarrow S_n = \frac{n}{2}\left( \frac{n + 1}{2} + 1 \right)\]

\[ \Rightarrow S_n = \frac{n}{2}\left( \frac{n + 3}{2} \right)\]

\[ \Rightarrow S_n = \frac{n\left( n + 3 \right)}{4}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.4 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.4 | Q 6 | Page 20

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


22 + 42 + 62 + 82 + ...


1.2.5 + 2.3.6 + 3.4.7 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...


1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

(2n − 1)2


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


4 + 6 + 9 + 13 + 18 + ...


2 + 4 + 7 + 11 + 16 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


Write the sum to n terms of a series whose rth term is r + 2r.

 

If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


3 + 5 + 9 + 15 + 23 + ...

 

2 + 5 + 10 + 17 + 26 + ...

 

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×