English

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms - Mathematics

Advertisements
Advertisements

Question

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms

Sum

Solution

Given series

⇒ (33 – 23) + (53 – 43) + (73 – 63) + ...

= (33 + 53 + 73 + …) – (23 + 43 + 63 + …)

⇒ [33 + 53 + 73 + … (2n + 1)3] – [23 + 43 + 63 + … (2n)3

∴ Tn = (2n + 1)3 – (2n)3

= (2n + 1 – 2n) [2n + 1)2 + (2n + 1)(2n) + (2n)2]  ....[∵ a3 – b3 = (a – b)(a2 + ab + b2)]

= 1 · [4n2 + 1 + 4n + 4n2 + 2n + 4n2]

= 12n2 + 6n + 1

S10 = 4(10)3 + 9(10)2 + 6(10)

= 4 × 1000 + 900 + 60

= 4000 + 960

= 4960

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Exercise [Page 162]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 9 Sequences and Series
Exercise | Q 11.(ii) | Page 162

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


1+ 3+ 53 + 73 + ...


1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...


1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

 2n3 + 3n2 − 1


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


3 + 7 + 14 + 24 + 37 + ...


1 + 3 + 6 + 10 + 15 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


2 + 5 + 10 + 17 + 26 + ...

 

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×