English

The Sum of the Series 2 3 + 8 9 + 26 27 + 80 81 + to N Terms is - Mathematics

Advertisements
Advertisements

Question

The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is

Options

  • \[n - \frac{1}{2}( 3^{- n} - 1)\]

  • \[n - \frac{1}{2}(1 - 3^{- n} )\]

  • \[n + \frac{1}{2}( 3^n - 1)\]

  • \[n - \frac{1}{2}( 3^n - 1)\]

MCQ

Solution

\[n - \frac{1}{2}(1 - 3^{- n} )\]

Let

\[T_n\] be the nth term of the given series.
Thus, we have:

\[T_n = \frac{3^n - 1}{3^n} = 1 - \frac{1}{3^n}\]

Now,
Let

\[S_n\] be the sum of n terms of the given series.
Thus, we have:

\[S_n = \sum^n_{k = 1} T_k \]

\[ = \sum^n_{k = 1} \left[ 1 - \frac{1}{3^k} \right]\]

\[ = \sum^n_{k = 1} 1 - \sum^n_{k = 1} \frac{1}{3^k}\]

\[ = n - \left[ \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + . . . + \frac{1}{3^n} \right]\]

\[ = n - \frac{1}{3}\left[ \frac{1 - \left( \frac{1}{3} \right)^n}{1 - \frac{1}{3}} \right]\]

\[ = n - \frac{1}{2}\left[ 1 - \left( \frac{1}{3} \right)^n \right]\]

\[ = n - \frac{1}{2}\left[ 1 - 3^{- n} \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.4 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.4 | Q 10 | Page 20

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


1.2.4 + 2.3.7 +3.4.10 + ...


1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

 2n3 + 3n2 − 1


Find the sum of the series whose nth term is:

(2n − 1)2


Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


3 + 7 + 14 + 24 + 37 + ...


1 + 3 + 6 + 10 + 15 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


If ∑ n = 210, then ∑ n2 =


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


The sum of the series

\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×