English

Find the 20th Term and the Sum of 20 Terms of the Series 2 × 4 + 4 × 6 + 6 × 8 + ... - Mathematics

Advertisements
Advertisements

Question

Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...

Solution

Let \[T_n\] be the nth term of the given series.
Thus, we have:

\[T_n = 2n\left( 2n + 2 \right) = 4 n^2 + 4n\]
For = 20, we have:

\[T_{20} = 4 n^2 + 4n\]

\[ = 4 \left( 20 \right)^2 + 4\left( 20 \right)\]

\[ = 1600 + 80\]

\[ = 1680\]

Therefore, the 20th term of the given series is 1680.
Now, let

\[S_n\] be the sum of n terms of the given series.
Thus, we have:

\[S_n = \sum^n_{k = 1} T_k\]

\[\Rightarrow S_n = \sum^n_{k = 1} \left( 4 k^2 + 4k \right)\]

\[ \Rightarrow S_n = {4\sum}^n_{k = 1} k^2 + 4 \sum^n_{k = 1} k\]

For n = 20, we have:

\[S_{20} = {4\sum}^{20}_{k = 1} k^2 + 4 \sum^{20}_{k = 1} k\]

\[ \Rightarrow S_{20} = \frac{4\left( 20 \right)\left( 21 \right)\left( 41 \right)}{6} + \frac{4\left( 20 \right)\left( 21 \right)}{2}\]

\[ \Rightarrow S_{20} = \left( 40 \right)\left( 7 \right)\left( 41 \right) + \left( 40 \right)\left( 21 \right)\]

\[ \Rightarrow S_{20} = 11480 + 840 = 12320\]

Hence, the sum of the first 20 terms of the series is 12320.

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.1 | Q 9 | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


1.2.4 + 2.3.7 +3.4.10 + ...


1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

 2n3 + 3n2 − 1


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


3 + 7 + 14 + 24 + 37 + ...


1 + 3 + 6 + 10 + 15 + ...


4 + 6 + 9 + 13 + 18 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


If ∑ n = 210, then ∑ n2 =


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


The sum of the series

\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


Write the sum to n terms of a series whose rth term is r + 2r.

 

If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.


3 + 5 + 9 + 15 + 23 + ...

 

Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×