English

Write the 50th Term of the Series 2 + 3 + 6 + 11 + 18 + ... - Mathematics

Advertisements
Advertisements

Question

Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...

Solution

We have,

\[ a_1 = 2, \]

\[ a_2 = 3 = 2 + 1, \]

\[ a_3 = 6 = 2 + 1 + 3, \]

\[ a_4 = 11 = 2 + 1 + 3 + 5, \]

\[ a_{50} = 2 + 1 + 3 + 5 + . . . \left( 50 \text { terms } \right)\]

\[ = 2 + \frac{49}{2}\left[ 2 \times 1 + \left( 49 - 1 \right) \times 2 \right] \left( \text { As, the terms apart 2 are in A . P . with a = 1 and d = 2 } \right)\]

\[ = 2 + \frac{49}{2}\left( 2 + 48 \times 2 \right)\]

\[ = 2 + \frac{49}{2} \times 98\]

\[ = 2 + {49}^2 \]

\[ = 2 + 2401\]

\[ = 2403\]

So, the 50th term of the given series is 2403.

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.3 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.3 | Q 7 | Page 19

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


22 + 42 + 62 + 82 + ...


1.2.5 + 2.3.6 + 3.4.7 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

 2n3 + 3n2 − 1


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Find the sum of the series whose nth term is:

(2n − 1)2


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


1 + 3 + 7 + 13 + 21 + ...


1 + 4 + 13 + 40 + 121 + ...


2 + 4 + 7 + 11 + 16 + ...


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


The value of  \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to


If ∑ n = 210, then ∑ n2 =


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

The sum of the series 12 + 32 + 52 + ... to n terms is 


The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


Write the sum to n terms of a series whose rth term is r + 2r.

 

If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


2 + 5 + 10 + 17 + 26 + ...

 

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×