Advertisements
Advertisements
Question
2 + 4 + 7 + 11 + 16 + ...
Solution
Let \[S_n\] be the sum of n terms and \[T_n\] be the nth term of the given series.
Thus, we have:
\[S_n = 2 + 4 + 7 + 11 + 16 + . . . + T_{n - 1} + T_n\] ...(1)
Equation (1) can be rewritten as:
\[S_n = 2 + 4 + 7 + 11 + 16 + . . . + T_{n - 1} + T_n\] ...(2)
On subtracting (2) from (1), we get:
\[S_n = 2 + 4 + 7 + 11 + 16 + . . . + T_{n - 1} + T_n \]
\[ S_n = 2 + 4 + 7 + 11 + 16 + . . . + T_{n - 1} + T_n \]
\[ - \ \ - - - - - \ - \ - \]
_____________________________________________________
\[ 0 = 2 + \left[ 2 + 3 + 4 + 5 + 6 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]
\[\Rightarrow 2 + \left[ \frac{\left( n - 1 \right)}{2}\left( 4 + \left( n - 2 \right)1 \right) \right] - T_n = 0\]
\[ \Rightarrow 2 + \left[ \frac{\left( n - 1 \right)}{2}\left( n + 2 \right) \right] - T_n = 0\]
\[ \Rightarrow 2 + \left[ \frac{n^2 + n}{2} - 1 \right] - T_n = 0\]
\[ \Rightarrow \left[ \frac{n^2}{2} + \frac{n}{2} + 1 \right] = T_n\]
\[\because S_n = \sum^n_{k = 1} T_k \]
\[ \therefore S_n = \sum^n_{k = 1} \left( \frac{k^2}{2} + \frac{k}{2} + 1 \right)\]
\[ = \frac{1}{2} \sum^n_{k = 1} k^2 + \frac{1}{2} \sum^n_{k = 1} k + \sum^n_{k = 1} 1\]
\[ = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{12} + \frac{n\left( n + 1 \right)}{4} + n\]
\[ = n\left( \frac{2 n^2 + 3n + 1 + 3n + 3 + 12}{12} \right)\]
\[ = \frac{n}{12}\left( 2 n^2 + 6n + 16 \right)\]
\[ = \frac{n}{6}\left( n^2 + 3n + 8 \right)\]
APPEARS IN
RELATED QUESTIONS
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
22 + 42 + 62 + 82 + ...
1.2.5 + 2.3.6 + 3.4.7 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
Find the sum of the series whose nth term is:
n3 − 3n
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
3 + 7 + 14 + 24 + 37 + ...
4 + 6 + 9 + 13 + 18 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
If ∑ n = 210, then ∑ n2 =
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
The sum of the series 12 + 32 + 52 + ... to n terms is
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
2 + 5 + 10 + 17 + 26 + ...
Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.