English

1.2.4 + 2.3.7 +3.4.10 + ... - Mathematics

Advertisements
Advertisements

Question

1.2.4 + 2.3.7 +3.4.10 + ...

Solution

Let \[T_n\] be the nth term of the given series.

Thus, we have: \[T_n = n\left( n + 1 \right)\left( 3n + 1 \right) = n\left( 3 n^2 + 4n + 1 \right) = \left( 3 n^3 + 4 n^2 + n \right)\]

Now, let 

\[S_n\] be the sum of n terms of the given series.

Thus, we have: 

\[S_n = \sum^n_{k = 1} T_k\]

\[\Rightarrow S_n = \sum 3^n_{k = 1} k^3 + \sum 4^n_{k = 1} k^2 + \sum^n_{k = 1} k \]

\[ \Rightarrow S_n = 3 \sum^n_{k = 1} k^3 + {4\sum}^n_{k = 1} k^2 + \sum^n_{k = 1} k \]

\[ \Rightarrow S_n = \frac{3 n^2 \left( n + 1 \right)^2}{4} + \frac{4n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + \frac{n\left( n + 1 \right)}{2}\]

\[ \Rightarrow S_n = \frac{3 n^2 \left( n + 1 \right)^2}{4} + \frac{2n\left( n + 1 \right)\left( 2n + 1 \right)}{3} + \frac{n\left( n + 1 \right)}{2}\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{3n\left( n + 1 \right)}{2} + \frac{4\left( 2n + 1 \right)}{3} + 1 \right)\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{3 n^2 + 3n}{2} + \frac{8n + 4}{3} + 1 \right)\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{9 n^2 + 9n + 16n + 8 + 6}{6} \right)\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{12}\left( 9 n^2 + 25n + 14 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.1 | Q 4 | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Find the sum of the series whose nth term is:

(2n − 1)2


1 + 3 + 7 + 13 + 21 + ...


1 + 3 + 6 + 10 + 15 + ...


1 + 4 + 13 + 40 + 121 + ...


4 + 6 + 9 + 13 + 18 + ...


2 + 4 + 7 + 11 + 16 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


The value of  \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


The sum of the series

\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of the series 12 + 32 + 52 + ... to n terms is 


The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


Write the sum to n terms of a series whose rth term is r + 2r.

 

3 + 5 + 9 + 15 + 23 + ...

 

2 + 5 + 10 + 17 + 26 + ...

 

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×