English

1 + 3 + 7 + 13 + 21 + ... - Mathematics

Advertisements
Advertisements

Question

1 + 3 + 7 + 13 + 21 + ...

Solution

Let \[T_n\] be the nth term and \[S_n\] be the sum of n terms of the given series.
Thus, we have:

\[S_n = 1 + 3 + 7 + 13 + 21 + . . . + T_{n - 1} + T_n\]    ...(1)

Equation (1) can be rewritten as:

\[S_n = 1 + 3 + 7 + 13 + 21 + . . . + T_{n - 1} + T_n\]   ...(2)
On subtracting (2) from (1), we get:

\[S_n = 1 + 3 + 7 + 13 + 21 + . . . + T_{n - 1} + T_n \]

\[ S_n = 1 + 3 + 7 + 13 + 21 + . . . + T_{n - 1} + T_n \]

_____________________________________________________

\[0 = 1 + \left[ 2 + 4 + 6 + 8 + . . + \left( T_n - T_{n - 1} \right) \right] - T_n = 0\]

The sequence of difference of successive terms is 2, 4, 6, 8,...
We observe that it is an AP with common difference 2 and first term 2.
Thus, we have:

\[1 + \left[ \frac{\left( n - 1 \right)}{2}\left\{ 4 + \left( n - 2 \right)2 \right\} \right] - T_n = 0\]

\[ \Rightarrow 1 + \left[ n^2 - n \right] = T_n \]

\[ \Rightarrow \left[ n^2 - n + 1 \right] = T_n\]

Now,

\[\because S_n = \sum^n_{k = 1} T_k \]

\[ \therefore S_n = \sum^n_{k = 1} \left( k^2 - k + 1 \right) \]

\[ \Rightarrow S_n = \sum^n_{k = 1} k^2 + \sum^n_{k = 1} 1 - \sum^n_{k = 1} k\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + n - \frac{n\left( n + 1 \right)}{2}\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{2n - 2}{3} \right) + n\]

\[ \Rightarrow S_n = n\left( \frac{n^2 - 1 + 3}{3} \right)\]

\[ \Rightarrow S_n = n\left( \frac{n^2 + 2}{3} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.2 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.2 | Q 3 | Page 18

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


1+ 3+ 53 + 73 + ...


22 + 42 + 62 + 82 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Find the sum of the series whose nth term is:

(2n − 1)2


Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...


1 + 4 + 13 + 40 + 121 + ...


2 + 4 + 7 + 11 + 16 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


If ∑ n = 210, then ∑ n2 =


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


The sum of the series

\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of the series 12 + 32 + 52 + ... to n terms is 


The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


Write the sum to n terms of a series whose rth term is r + 2r.

 

If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


2 + 5 + 10 + 17 + 26 + ...

 

The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×