Advertisements
Advertisements
प्रश्न
1 + 3 + 7 + 13 + 21 + ...
उत्तर
Let \[T_n\] be the nth term and \[S_n\] be the sum of n terms of the given series.
Thus, we have:
\[S_n = 1 + 3 + 7 + 13 + 21 + . . . + T_{n - 1} + T_n\] ...(1)
Equation (1) can be rewritten as:
\[S_n = 1 + 3 + 7 + 13 + 21 + . . . + T_{n - 1} + T_n\] ...(2)
On subtracting (2) from (1), we get:
\[S_n = 1 + 3 + 7 + 13 + 21 + . . . + T_{n - 1} + T_n \]
\[ S_n = 1 + 3 + 7 + 13 + 21 + . . . + T_{n - 1} + T_n \]
_____________________________________________________
\[0 = 1 + \left[ 2 + 4 + 6 + 8 + . . + \left( T_n - T_{n - 1} \right) \right] - T_n = 0\]
The sequence of difference of successive terms is 2, 4, 6, 8,...
We observe that it is an AP with common difference 2 and first term 2.
Thus, we have:
\[1 + \left[ \frac{\left( n - 1 \right)}{2}\left\{ 4 + \left( n - 2 \right)2 \right\} \right] - T_n = 0\]
\[ \Rightarrow 1 + \left[ n^2 - n \right] = T_n \]
\[ \Rightarrow \left[ n^2 - n + 1 \right] = T_n\]
Now,
\[\because S_n = \sum^n_{k = 1} T_k \]
\[ \therefore S_n = \sum^n_{k = 1} \left( k^2 - k + 1 \right) \]
\[ \Rightarrow S_n = \sum^n_{k = 1} k^2 + \sum^n_{k = 1} 1 - \sum^n_{k = 1} k\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + n - \frac{n\left( n + 1 \right)}{2}\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{2n - 2}{3} \right) + n\]
\[ \Rightarrow S_n = n\left( \frac{n^2 - 1 + 3}{3} \right)\]
\[ \Rightarrow S_n = n\left( \frac{n^2 + 2}{3} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
13 + 33 + 53 + 73 + ...
22 + 42 + 62 + 82 + ...
1.2.5 + 2.3.6 + 3.4.7 + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
Find the sum of the series whose nth term is:
(2n − 1)2
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
3 + 7 + 14 + 24 + 37 + ...
1 + 4 + 13 + 40 + 121 + ...
4 + 6 + 9 + 13 + 18 + ...
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
The sum of the series
\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
The sum of the series 12 + 32 + 52 + ... to n terms is
Write the sum to n terms of a series whose rth term is r + 2r.
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
3 + 5 + 9 + 15 + 23 + ...
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.