Advertisements
Advertisements
प्रश्न
22 + 42 + 62 + 82 + ...
उत्तर
Let \[T_n\] be the nth term of the given series.
Thus, we have: \[T_n = \left( 2n \right)^2\]
Now, let \[S_n\] be the sum of n terms of the given series.
Thus, we have:
\[S_n = \sum^n_{k = 1} T_k \]
\[ = \sum^n_{k = 1} \left( 2k \right)^2 \]
\[ = \sum^n_{k = 1} 4 k^2 \]
\[ = 4 \sum^n_{k = 1} k^2 \]
\[ = 4\frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6}\]
\[ = \frac{2n}{3}\left( n + 1 \right)\left( 2n + 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
1.2.4 + 2.3.7 +3.4.10 + ...
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
3 + 7 + 14 + 24 + 37 + ...
1 + 3 + 6 + 10 + 15 + ...
1 + 4 + 13 + 40 + 121 + ...
4 + 6 + 9 + 13 + 18 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
If ∑ n = 210, then ∑ n2 =
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of the series 12 + 32 + 52 + ... to n terms is
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
Write the sum to n terms of a series whose rth term is r + 2r.
3 + 5 + 9 + 15 + 23 + ...
Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
Let Sn(x) = `log_a 1/2 x + log_a 1/3 x + log_a 1/6 x + log_a 1/11 x + log_a 1/18 x + log_a 1/27x + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.