मराठी

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms

बेरीज

उत्तर

Given series

⇒ (33 – 23) + (53 – 43) + (73 – 63) + ...

= (33 + 53 + 73 + …) – (23 + 43 + 63 + …)

⇒ [33 + 53 + 73 + … (2n + 1)3] – [23 + 43 + 63 + … (2n)3

∴ Tn = (2n + 1)3 – (2n)3

= (2n + 1 – 2n) [2n + 1)2 + (2n + 1)(2n) + (2n)2]  ....[∵ a3 – b3 = (a – b)(a2 + ab + b2)]

= 1 · [4n2 + 1 + 4n + 4n2 + 2n + 4n2]

= 12n2 + 6n + 1

S10 = 4(10)3 + 9(10)2 + 6(10)

= 4 × 1000 + 900 + 60

= 4000 + 960

= 4960

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Exercise [पृष्ठ १६२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 9 Sequences and Series
Exercise | Q 11.(ii) | पृष्ठ १६२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

(2n − 1)2


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


1 + 3 + 7 + 13 + 21 + ...


4 + 6 + 9 + 13 + 18 + ...


If ∑ n = 210, then ∑ n2 =


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


The sum of the series

\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


The sum of the series 12 + 32 + 52 + ... to n terms is 


The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.


2 + 5 + 10 + 17 + 26 + ...

 

The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×