मराठी

2 + 5 + 10 + 17 + 26 + ... - Mathematics

Advertisements
Advertisements

प्रश्न

2 + 5 + 10 + 17 + 26 + ...

 
टीपा लिहा

उत्तर

Let  \[T_n\]  be the nth term and \[S_n\]  be the sum of n terms of the given series.

Thus, we have:

\[S_n = 2 + 5 + 10 + 17 + 26 + . . . + T_{n - 1} + T_n\]    ...(1) 
Equation (1) can be rewritten as: 
\[S_n = 2 + 5 + 10 + 17 + 26 + . . . + T_{n - 1} + T_n\]  ...(2) 
 
On subtracting (2) from (1), we get:
\[S_n = 2 + 5 + 10 + 17 + 26 + . . . + T_{n - 1} + T_n \]
\[ S_n = 2 + 5 + 10 + 17 + 26 + . . . + T_{n - 1} + T_n \]
\[ 0 = 2 + \left[ 3 + 5 + 7 + 9 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]

The sequence of difference of successive terms is 3, 5, 7, 9,...
We observe that it is an AP with common difference 2 and first term 3.
Thus, we have:

\[2 + \left[ \frac{\left( n - 1 \right)}{2}\left\{ 6 + \left( n - 2 \right)2 \right\} \right] - T_n = 0\]
\[ \Rightarrow 2 + \left[ n^2 - 1 \right] = T_n \]
\[ \Rightarrow \left[ n^2 + 1 \right] = T_n\]

Now,

\[\because S_n = \sum^n_{k = 1} T_k \]
\[ \therefore S_n = \sum^n_{k = 1} \left( k^2 + 1 \right) \]
\[ \Rightarrow S_n = \sum^n_{k = 1} k^2 + \sum^n_{k = 1} 1\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + n\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n + 1 \right) + 6n}{6}\]
\[ \Rightarrow S_n = \frac{n\left( 2 n^2 + 3n + 7 \right)}{6}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Some special series - Exercise 21.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 21 Some special series
Exercise 21.2 | Q 2 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


1+ 3+ 53 + 73 + ...


22 + 42 + 62 + 82 + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Find the sum of the series whose nth term is:

(2n − 1)2


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


1 + 3 + 6 + 10 + 15 + ...


4 + 6 + 9 + 13 + 18 + ...


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


The sum of the series

\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


The sum of the series 12 + 32 + 52 + ... to n terms is 


The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


Write the sum to n terms of a series whose rth term is r + 2r.

 

Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×