मराठी

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms

बेरीज

उत्तर

Given series

⇒ (33 – 23) + (53 – 43) + (73 – 63) + ...

= (33 + 53 + 73 + …) – (23 + 43 + 63 + …)

⇒ [33 + 53 + 73 + … (2n + 1)3] – [23 + 43 + 63 + … (2n)3

∴ Tn = (2n + 1)3 – (2n)3

= (2n + 1 – 2n) [2n + 1)2 + (2n + 1)(2n) + (2n)2]  ....[∵ a3 – b3 = (a – b)(a2 + ab + b2)]

= 1 · [4n2 + 1 + 4n + 4n2 + 2n + 4n2]

= 12n2 + 6n + 1

Sn = `sum "T"_n = 12 sum n^2 + 6 sum n + n`

= `12 * (n(n + 1)(2n + 1))/6 + (6n(n + 1))/2 + n`

= 2n(n + 1)(2n + 1) + 3n(n + 1) + n

= n[2(n + 1)(2n + 1) + 3(n + 1) + 1]

= n[2(2n2 + 3n + 1) + 3n + 3 + 1]

= n[4n2 + 6n + 2 + 3n + 4]

= n[4n2 + 9n + 6]

= 4n3 + 9n2 + 6n

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Exercise [पृष्ठ १६२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 9 Sequences and Series
Exercise | Q 11.(i) | पृष्ठ १६२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


1.2.5 + 2.3.6 + 3.4.7 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...


1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

(2n − 1)2


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.


2 + 5 + 10 + 17 + 26 + ...

 

Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×