हिंदी

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms

योग

उत्तर

Given series

⇒ (33 – 23) + (53 – 43) + (73 – 63) + ...

= (33 + 53 + 73 + …) – (23 + 43 + 63 + …)

⇒ [33 + 53 + 73 + … (2n + 1)3] – [23 + 43 + 63 + … (2n)3

∴ Tn = (2n + 1)3 – (2n)3

= (2n + 1 – 2n) [2n + 1)2 + (2n + 1)(2n) + (2n)2]  ....[∵ a3 – b3 = (a – b)(a2 + ab + b2)]

= 1 · [4n2 + 1 + 4n + 4n2 + 2n + 4n2]

= 12n2 + 6n + 1

Sn = `sum "T"_n = 12 sum n^2 + 6 sum n + n`

= `12 * (n(n + 1)(2n + 1))/6 + (6n(n + 1))/2 + n`

= 2n(n + 1)(2n + 1) + 3n(n + 1) + n

= n[2(n + 1)(2n + 1) + 3(n + 1) + 1]

= n[2(2n2 + 3n + 1) + 3n + 3 + 1]

= n[4n2 + 6n + 2 + 3n + 4]

= n[4n2 + 9n + 6]

= 4n3 + 9n2 + 6n

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Exercise [पृष्ठ १६२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Exercise | Q 11.(i) | पृष्ठ १६२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


1+ 3+ 53 + 73 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


3 + 7 + 14 + 24 + 37 + ...


4 + 6 + 9 + 13 + 18 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


If ∑ n = 210, then ∑ n2 =


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


3 + 5 + 9 + 15 + 23 + ...

 

2 + 5 + 10 + 17 + 26 + ...

 

A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×