Advertisements
Advertisements
प्रश्न
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
उत्तर
Given series
⇒ (33 – 23) + (53 – 43) + (73 – 63) + ...
= (33 + 53 + 73 + …) – (23 + 43 + 63 + …)
⇒ [33 + 53 + 73 + … (2n + 1)3] – [23 + 43 + 63 + … (2n)3]
∴ Tn = (2n + 1)3 – (2n)3
= (2n + 1 – 2n) [2n + 1)2 + (2n + 1)(2n) + (2n)2] ....[∵ a3 – b3 = (a – b)(a2 + ab + b2)]
= 1 · [4n2 + 1 + 4n + 4n2 + 2n + 4n2]
= 12n2 + 6n + 1
Sn = `sum "T"_n = 12 sum n^2 + 6 sum n + n`
= `12 * (n(n + 1)(2n + 1))/6 + (6n(n + 1))/2 + n`
= 2n(n + 1)(2n + 1) + 3n(n + 1) + n
= n[2(n + 1)(2n + 1) + 3(n + 1) + 1]
= n[2(2n2 + 3n + 1) + 3n + 3 + 1]
= n[4n2 + 6n + 2 + 3n + 4]
= n[4n2 + 9n + 6]
= 4n3 + 9n2 + 6n
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
13 + 33 + 53 + 73 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
n3 − 3n
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
3 + 7 + 14 + 24 + 37 + ...
4 + 6 + 9 + 13 + 18 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
If ∑ n = 210, then ∑ n2 =
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
3 + 5 + 9 + 15 + 23 + ...
2 + 5 + 10 + 17 + 26 + ...
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.