Advertisements
Advertisements
प्रश्न
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
उत्तर
Let \[T_n\] be the nth term of the given series.
Thus, we have:
\[T_n = \frac{1}{(3n - 2) (3n + 1)}\]
Now, let
\[S_n\]
be the sum of n terms of the given series.
Thus, we have:
\[S_n = \sum^n_{k = 1} \frac{1}{\left( 3k - 2 \right)\left( 3k + 1 \right)}\]
\[ = \frac{1}{3} \sum^n_{k = 1} \left( \frac{1}{\left( 3k - 2 \right)} - \frac{1}{\left( 3k + 1 \right)} \right)\]
\[ = \frac{1}{3} \sum^n_{k = 1} \frac{1}{\left( 3k - 2 \right)} - \frac{1}{3} \sum^n_{k = 1} \frac{1}{\left( 3k + 1 \right)}\]
\[ = \frac{1}{3}\left[ \left( 1 + \frac{1}{4} + \frac{1}{7} + \frac{1}{10} + . . . + \frac{1}{3n - 2} \right) - \left( \frac{1}{4} + \frac{1}{7} + \frac{1}{10} + . . . + \frac{1}{3n - 2} + \frac{1}{3n + 1} \right) \right]\]
\[ = \frac{1}{3}\left[ 1 - \left( \frac{1}{3n + 1} \right) \right]\]
\[ = \frac{n}{3n + 1}\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
22 + 42 + 62 + 82 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
3 + 7 + 14 + 24 + 37 + ...
1 + 3 + 6 + 10 + 15 + ...
4 + 6 + 9 + 13 + 18 + ...
2 + 4 + 7 + 11 + 16 + ...
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
If ∑ n = 210, then ∑ n2 =
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
The sum of the series
\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
Write the sum to n terms of a series whose rth term is r + 2r.
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.