Advertisements
Advertisements
प्रश्न
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
विकल्प
`(n(n + 1)(n + 2))/6`
`(n(n + 1))/2`
`(n^2 + 3n + 2)/2`
None of these
उत्तर
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals `(n(n + 1)(n + 2))/6`.
Explanation:
Given that `sum_(i = 1)^n S_r/s_r = S_1/s_1 + S_2/s_2 + S_3/s_3 + ... + S_n/s_n`
Let Tn be the nth term of the above series
∴ Tn = `S_n/s_n`
= `([(n(n + 1))/2]^2)/((n(n + 1))/2)`
= `(n(n + 1))/2`
= `(n^2 + n)/2`
Now sum of the given series
`sum"T"_"n" = 1/2 sum [n^2 + n]`
= `1/2 [sum n^2 + sum n]`
= `1/2 [(n(n + 1)(2n + 1))/6 + (n(n + 1))/2]`
= `1/2 * (n(n + 1))/2 [(2n + 1)/3 + 1]`
= `(n(n + 1))/4 [(2n + 1 + 3)/3]`
= `(n(n + 1))/4 * ((2n + 4))/3`
= `(n(n + 1)(n + 2))/6`
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
13 + 33 + 53 + 73 + ...
22 + 42 + 62 + 82 + ...
1.2.5 + 2.3.6 + 3.4.7 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
Find the sum of the series whose nth term is:
(2n − 1)2
1 + 3 + 6 + 10 + 15 + ...
4 + 6 + 9 + 13 + 18 + ...
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
The sum of the series
\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
Write the sum to n terms of a series whose rth term is r + 2r.
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
3 + 5 + 9 + 15 + 23 + ...
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.