Advertisements
Advertisements
प्रश्न
3 × 12 + 5 ×22 + 7 × 32 + ...
उत्तर
Let \[T_n\] be the nth term of the given series.
Thus, we have:
\[T_n = \left( 2n + 1 \right) n^2 = 2 n^3 + n^2\]
Now, let \[S_n\] be the sum of n terms of the given series.
Thus, we have:
\[S_n = \sum^n_{k = 1} T_k\]
\[\Rightarrow S_n = \sum^n_{k = 1} \left( 2 k^3 + k^2 \right)\]
\[ \Rightarrow S_n = {2\sum}^n_{k = 1} k^3 + \sum^n_{k = 1} k^2 \]
\[ \Rightarrow S_n = \left[ \frac{2 n^2 \left( n + 1 \right)^2}{4} + \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6} \right]\]
\[ \Rightarrow S_n = \left[ \frac{n^2 \left( n + 1 \right)^2}{2} + \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6} \right]\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left[ n\left( n + 1 \right) + \frac{2n + 1}{3} \right]\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{3 n^2 + 3n + 2n + 1}{3} \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{3 n^2 + 5n + 1}{3} \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{6}\left( 3 n^2 + 5n + 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
13 + 33 + 53 + 73 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
Find the sum of the series whose nth term is:
n3 − 3n
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
1 + 3 + 7 + 13 + 21 + ...
1 + 3 + 6 + 10 + 15 + ...
1 + 4 + 13 + 40 + 121 + ...
4 + 6 + 9 + 13 + 18 + ...
2 + 4 + 7 + 11 + 16 + ...
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .
The sum of the series
\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.