Advertisements
Advertisements
प्रश्न
Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .
उत्तर
\[\text { We know that } , S_r = 1^3 + 2^3 + 3^3 + . . . + r^3 = \left[ \frac{r\left( r + 1 \right)}{2} \right]^2 \]
\[\text { And }, s_r = 1 + 2 + 3 + . . . + r = \frac{r\left( r + 1 \right)}{2}\]
\[As, \frac{S_r}{s_r} = \frac{\left[ \frac{r\left( r + 1 \right)}{2} \right]^2}{\left[ \frac{r\left( r + 1 \right)}{2} \right]} = \frac{r\left( r + 1 \right)}{2} = \frac{1}{2}\left( r^2 + r \right)\]
Now,
\[ \sum^n_{r = 1} \frac{S_r}{s_r} = \sum^n_{r = 1} \frac{1}{2}\left( r^2 + r \right)\]
\[ = \frac{1}{2}\left( \sum^n_{r = 1} r^2 + \sum^n_{r = 1} r \right)\]
\[ = \frac{1}{2}\left[ \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + \frac{n\left( n + 1 \right)}{2} \right]\]
\[ = \frac{1}{2} \times \frac{n\left( n + 1 \right)}{2} \times \left[ \frac{\left( 2n + 1 \right)}{3} + 1 \right]\]
\[ = \frac{n\left( n + 1 \right)}{4}\left[ \frac{2n + 1 + 3}{3} \right]\]
\[ = \frac{n\left( n + 1 \right)}{4}\left[ \frac{2n + 4}{3} \right]\]
\[ = \frac{n\left( n + 1 \right)}{4} \times \frac{2\left( n + 2 \right)}{3}\]
\[ = \frac{n\left( n + 1 \right)\left( n + 2 \right)}{6}\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
22 + 42 + 62 + 82 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
Find the sum of the series whose nth term is:
n3 − 3n
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Find the sum of the series whose nth term is:
(2n − 1)2
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
1 + 3 + 7 + 13 + 21 + ...
1 + 3 + 6 + 10 + 15 + ...
1 + 4 + 13 + 40 + 121 + ...
4 + 6 + 9 + 13 + 18 + ...
2 + 4 + 7 + 11 + 16 + ...
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
The sum of the series 12 + 32 + 52 + ... to n terms is
Write the sum to n terms of a series whose rth term is r + 2r.
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
3 + 5 + 9 + 15 + 23 + ...
Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.