हिंदी

The Sum of 10 Terms of the Series √ 2 + √ 6 + √ 18 + .... is - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

विकल्प

  • \[121 (\sqrt{6} + \sqrt{2})\]

  • \[243 (\sqrt{3} + 1)\]

  • \[\frac{121}{\sqrt{3} - 1}\]

  • \[242 (\sqrt{3} - 1)\]

MCQ

उत्तर

\[121 (\sqrt{6} + \sqrt{2})\]

Let \[T_n\] be the nth term of the given series.
Thus, we have:

\[T_n = \sqrt{2 \times 3^{n - 1}} = \sqrt{2}\left( \sqrt{3^{n - 1}} \right)\]

Now, let \[S_{10}\] be the sum of 10 terms of the given series.
Thus, we have:

\[S_{10} = \sqrt{2} \sum^{10}_{k = 1} \left( \sqrt{3^\left( k - 1 \right)} \right)\]

\[ \Rightarrow S_{10} = \sqrt{2}\left( 1 + \sqrt{3} + \sqrt{3^2} + . . . + \sqrt{3^9} \right)\]

\[ \Rightarrow S_{10} = \sqrt{2}\left( \frac{\sqrt{3^{10}} - 1}{\sqrt{3} - 1} \right)\]

\[ \Rightarrow S_{10n} = \sqrt{2}\left( \frac{3^5 - 1}{\sqrt{3} - 1} \right)\left( \frac{\sqrt{3} + 1}{\sqrt{3} + 1} \right)\]

\[ \Rightarrow S_{10} = \frac{\sqrt{2}}{2}\left( 3^5 - 1 \right)\left( \sqrt{3} + 1 \right)\]

\[ \Rightarrow S_{10} = \frac{1}{2}\left( 242 \right)\left( \sqrt{6} + \sqrt{2} \right)\]

\[ \Rightarrow S_{10} = 121 \left( \sqrt{6} + \sqrt{2} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Some special series - Exercise 21.4 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 21 Some special series
Exercise 21.4 | Q 8 | पृष्ठ २०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


22 + 42 + 62 + 82 + ...


1.2.5 + 2.3.6 + 3.4.7 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


1 + 3 + 7 + 13 + 21 + ...


1 + 3 + 6 + 10 + 15 + ...


1 + 4 + 13 + 40 + 121 + ...


If ∑ n = 210, then ∑ n2 =


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


The sum of the series

\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of the series 12 + 32 + 52 + ... to n terms is 


Write the sum to n terms of a series whose rth term is r + 2r.

 

If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.


3 + 5 + 9 + 15 + 23 + ...

 

2 + 5 + 10 + 17 + 26 + ...

 

Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×