हिंदी

2 + 5 + 10 + 17 + 26 + ... - Mathematics

Advertisements
Advertisements

प्रश्न

2 + 5 + 10 + 17 + 26 + ...

 
टिप्पणी लिखिए

उत्तर

Let  \[T_n\]  be the nth term and \[S_n\]  be the sum of n terms of the given series.

Thus, we have:

\[S_n = 2 + 5 + 10 + 17 + 26 + . . . + T_{n - 1} + T_n\]    ...(1) 
Equation (1) can be rewritten as: 
\[S_n = 2 + 5 + 10 + 17 + 26 + . . . + T_{n - 1} + T_n\]  ...(2) 
 
On subtracting (2) from (1), we get:
\[S_n = 2 + 5 + 10 + 17 + 26 + . . . + T_{n - 1} + T_n \]
\[ S_n = 2 + 5 + 10 + 17 + 26 + . . . + T_{n - 1} + T_n \]
\[ 0 = 2 + \left[ 3 + 5 + 7 + 9 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]

The sequence of difference of successive terms is 3, 5, 7, 9,...
We observe that it is an AP with common difference 2 and first term 3.
Thus, we have:

\[2 + \left[ \frac{\left( n - 1 \right)}{2}\left\{ 6 + \left( n - 2 \right)2 \right\} \right] - T_n = 0\]
\[ \Rightarrow 2 + \left[ n^2 - 1 \right] = T_n \]
\[ \Rightarrow \left[ n^2 + 1 \right] = T_n\]

Now,

\[\because S_n = \sum^n_{k = 1} T_k \]
\[ \therefore S_n = \sum^n_{k = 1} \left( k^2 + 1 \right) \]
\[ \Rightarrow S_n = \sum^n_{k = 1} k^2 + \sum^n_{k = 1} 1\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + n\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n + 1 \right) + 6n}{6}\]
\[ \Rightarrow S_n = \frac{n\left( 2 n^2 + 3n + 7 \right)}{6}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Some special series - Exercise 21.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 21 Some special series
Exercise 21.2 | Q 2 | पृष्ठ १८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


1+ 3+ 53 + 73 + ...


1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...


1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


1 + 3 + 6 + 10 + 15 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


The value of  \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×