हिंदी

Find the natural number a for which ∑k=1nf(a+k) = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.

योग

उत्तर

Given that f(x + y) = f(x) . f(y) and f(1) = 2

Therefore, f(2) = f(1 + 1) = f(1) . f(1) = 22

f(3) = f(1 + 2) = f(1) . f(2) = 23

f(4) = f(1 + 3) = f(1) . f(3) = 24

And so on. Continuing the process, we obtain

f(k) = 2k and f(a) = 2a

Hence `sum_(k = 1)^n f(a + k) = sum_(k = 1)^n f(a) * f(k)`

= `f(a) sum_(k = 1)^n f(k)`

= 2a (21 + 22 + 23 + ... + 2n)

= `2^n {(2*(2^n - 1))/(2 - 1)}`

= `2^(n + 1) (2^n - 1)`  ....(1)

But, we are given `sum_(k = 1)^n f(a + k)` = 16(2n – 1)

`""^(2^(n + 1)) (2^n - 1)` = 16(2n – 1)

⇒ 2a+1 = 24 

⇒ a + 1 = 4

⇒ a = 3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Solved Examples [पृष्ठ १५७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Solved Examples | Q 13 | पृष्ठ १५७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


1.2.5 + 2.3.6 + 3.4.7 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


1 + 3 + 7 + 13 + 21 + ...


3 + 7 + 14 + 24 + 37 + ...


If ∑ n = 210, then ∑ n2 =


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


The sum of the series

\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

The sum of the series 12 + 32 + 52 + ... to n terms is 


If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.


3 + 5 + 9 + 15 + 23 + ...

 

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×