हिंदी

Find the Sum of the Series Whose Nth Term Is: N3 − 3n - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the series whose nth term is:

n3 − 3n

उत्तर

Let \[T_n\] be the nth term of the given series.
Thus, we have:

\[T_n = n^3 - 3^n\]

Let \[S_n\] be the sum of n terms of the given series.
Now, \[S_n = \sum^n_{k = 1} T_k\]

\[\Rightarrow S_n = \sum^n_{k = 1} \left( k^3 - 3^k \right)\]

\[ \Rightarrow S_n = \sum^n_{k = 1} k^3 - \sum^n_{k = 1} 3^k \]

\[ \Rightarrow S_n = \frac{n^2 \left( n + 1 \right)^2}{4} - \left( 3 + 3^2 + 3^3 + 3^4 + . . . + 3^n \right)\]

\[ \Rightarrow S_n = \frac{n^2 \left( n + 1 \right)^2}{4} - \left[ \frac{3\left( 3^n - 1 \right)}{3 - 1} \right]\]

\[ \Rightarrow S_n = \frac{n^2 \left( n + 1 \right)^2}{4} - \frac{3}{2}\left( 3^n - 1 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Some special series - Exercise 21.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 21 Some special series
Exercise 21.1 | Q 8.3 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


1 + 4 + 13 + 40 + 121 + ...


If ∑ n = 210, then ∑ n2 =


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

The sum of the series 12 + 32 + 52 + ... to n terms is 


If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


3 + 5 + 9 + 15 + 23 + ...

 

Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×