Advertisements
Advertisements
प्रश्न
4 + 6 + 9 + 13 + 18 + ...
उत्तर
Let \[T_n\] be the nth term and \[S_n\] be the sum of n terms of the given series.
Thus, we have:
\[S_n = 4 + 6 + 9 + 13 + 18 + . . . + T_{n - 1} + T_n\] ...(1)
Equation (1) can be rewritten as:
\[S_n = 4 + 6 + 9 + 13 + 18 + . . . + T_{n - 1} + T_n\] ...(2)
On subtracting (2) from (1), we get:
\[S_n = 4 + 6 + 9 + 13 + 18 + . . . + T_{n - 1} + T_n \]
\[ S_n = 4 + 6 + 9 + 13 + 18 + . . . + T_{n - 1} + T_n \]
\[ 0 = 4 + \left[ 2 + 3 + 4 + 5 + 6 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]
The sequence of difference between successive terms is 2, 3, 4, 5,...
We observe that it is an AP with common difference 1 and first term 2.
Now,
\[4 + \left[ \frac{\left( n - 1 \right)}{2}\left\{ 4 + \left( n - 2 \right)1 \right\} \right] - T_n = 0\]
\[ \Rightarrow 4 + \left[ \frac{\left( n - 1 \right)}{2}\left( n + 2 \right) \right] - T_n = 0\]
\[ \Rightarrow 4 + \left[ \frac{n^2 + n}{2} - 1 \right] - T_n = 0\]
\[ \Rightarrow \left[ \frac{n^2}{2} + \frac{n}{2} + 3 \right] = T_n\]
\[\because S_n = \sum^n_{k = 1} T_k \]
\[ \therefore S_n = \sum^n_{k = 1} \left( \frac{k^2}{2} + \frac{k}{2} + 3 \right)\]
\[ = \frac{1}{2} \sum^n_{k = 1} k^2 + \frac{1}{2} \sum^n_{k = 1} k + \sum^n_{k = 1} 3\]
\[ = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{2 \times 6} + \frac{n\left( n + 1 \right)}{2 \times 2} + 3n\]
\[ = n\left( \frac{2 n^2 + 3n + 1 + 3n + 3 + 36}{12} \right)\]
\[ = \frac{n}{12}\left( 2 n^2 + 6n + 40 \right)\]
\[ = \frac{n}{6}\left( n^2 + 3n + 20 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
13 + 33 + 53 + 73 + ...
22 + 42 + 62 + 82 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
Find the sum of the series whose nth term is:
n3 − 3n
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
1 + 3 + 7 + 13 + 21 + ...
3 + 7 + 14 + 24 + 37 + ...
1 + 4 + 13 + 40 + 121 + ...
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
If ∑ n = 210, then ∑ n2 =
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.