हिंदी

Find the Sum of the Series Whose Nth Term Is: (2n − 1)2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the series whose nth term is:

(2n − 1)2

उत्तर

Let \[T_n\] be the nth term of the given series.
Thus, we have:

\[T_n = \left( 2n - 1 \right)^2\]

Let \[S_n\] be the sum of n terms of the given series.
Now,

\[S_n = \sum^n_{k = 1} T_k\]

\[\Rightarrow S_n = \sum^n_{k = 1} \left( 2k - 1 \right)^2 \]

\[ \Rightarrow S_n = \sum^n_{k = 1} \left( 4 k^2 + 1 - 4k \right)\]

\[ \Rightarrow S_n = {4\sum}^n_{k = 1} k^2 + \sum 1^n_{k = 1} - 4 \sum^n_{k = 1} k \]

\[ \Rightarrow S_n = \frac{4n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + n - \frac{4n\left( n + 1 \right)}{2}\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left[ \frac{4\left( 2n + 1 \right)}{3} - 4 \right] + n\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{8n + 4 - 12}{3} \right) + n\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{8n - 8}{3} \right) + n\]

\[ \Rightarrow S_n = 4n\left( n + 1 \right)\left( \frac{n - 1}{3} \right) + n\]

\[ \Rightarrow S_n = \frac{n\left( 4n + 4 \right)\left( n - 1 \right) + 3n}{3}\]

\[ \Rightarrow S_n = \frac{n}{3}\left( 4 n^2 + 4n - 4n - 4 + 3 \right)\]

\[ \Rightarrow S_n = \frac{n}{3}\left( 4 n^2 - 1 \right)\]

\[ \Rightarrow S_n = \frac{n}{3}\left( 2n - 1 \right)\left( 2n + 1 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Some special series - Exercise 21.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 21 Some special series
Exercise 21.1 | Q 8.5 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


1+ 3+ 53 + 73 + ...


22 + 42 + 62 + 82 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


1 + 3 + 7 + 13 + 21 + ...


1 + 4 + 13 + 40 + 121 + ...


4 + 6 + 9 + 13 + 18 + ...


2 + 4 + 7 + 11 + 16 + ...


The value of  \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


2 + 5 + 10 + 17 + 26 + ...

 

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×