मराठी

1 1 . 6 + 1 6 . 11 + 1 11 . 14 + 1 14 . 19 + . . . + 1 ( 5 N − 4 ) ( 5 N + 1 ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]

उत्तर

Let \[T_n\]  be the nth term of the given series.
Thus, we have: \[T_n = \frac{1}{(5n - 4) (5n + 1)}\]

Now, let \[S_n\] be the sum of n terms of the given series.
Thus, we have:

\[S_n = \sum^n_{k = 1} \frac{1}{\left( 5k - 4 \right)\left( 5k + 1 \right)}\]

\[ = \frac{1}{5} \sum^n_{k = 1} \left( \frac{1}{\left( 5k - 4 \right)} - \frac{1}{\left( 5k + 1 \right)} \right)\]

\[ = \frac{1}{5} \sum^n_{k = 1} \frac{1}{\left( 5k - 4 \right)} - \frac{1}{5} \sum^n_{k = 1} \frac{1}{\left( 5k + 1 \right)}\]

\[ = \frac{1}{5}\left[ \left( 1 + \frac{1}{6} + \frac{1}{11} + \frac{1}{16} + . . . + \frac{1}{5n - 4} \right) - \left( \frac{1}{6} + \frac{1}{11} + \frac{1}{16} + . . . + \frac{1}{5n - 4} + \frac{1}{5n + 1} \right) \right]\]

\[ = \frac{1}{5}\left[ 1 - \left( \frac{1}{5n + 1} \right) \right]\]

\[ = \frac{n}{5n + 1}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Some special series - Exercise 21.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 21 Some special series
Exercise 21.2 | Q 10 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


22 + 42 + 62 + 82 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

 2n3 + 3n2 − 1


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


1 + 3 + 7 + 13 + 21 + ...


3 + 7 + 14 + 24 + 37 + ...


1 + 4 + 13 + 40 + 121 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


The value of  \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


The sum of the series

\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


3 + 5 + 9 + 15 + 23 + ...

 

2 + 5 + 10 + 17 + 26 + ...

 

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×