Advertisements
Advertisements
प्रश्न
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
उत्तर
According to the question,
\[\Rightarrow 2 \times \frac{n\left( n + 1 \right)}{2} = k\left[ \frac{n}{2}\left\{ 2 \times 1 + \left( n - 1 \right) \times 2 \right\} \right]\]
\[ \Rightarrow \frac{2n\left( n + 1 \right)}{2} = k\left[ \frac{n}{2}\left( 2 + 2n - 2 \right) \right]\]
\[ \Rightarrow n\left( n + 1 \right) = k\left[ \frac{n}{2}\left( 2n \right) \right]\]
\[ \Rightarrow n^2 + n = k n^2 \]
\[ \Rightarrow k = \frac{n + 1}{n}\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
13 + 33 + 53 + 73 + ...
22 + 42 + 62 + 82 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
Find the sum of the series whose nth term is:
n3 − 3n
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Find the sum of the series whose nth term is:
(2n − 1)2
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
1 + 3 + 7 + 13 + 21 + ...
3 + 7 + 14 + 24 + 37 + ...
1 + 3 + 6 + 10 + 15 + ...
4 + 6 + 9 + 13 + 18 + ...
2 + 4 + 7 + 11 + 16 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
If ∑ n = 210, then ∑ n2 =
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
2 + 5 + 10 + 17 + 26 + ...
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
Let Sn(x) = `log_a 1/2 x + log_a 1/3 x + log_a 1/6 x + log_a 1/11 x + log_a 1/18 x + log_a 1/27x + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.