मराठी

The Sum of the Series 12 + 32 + 52 + ... to N Terms is - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of the series 12 + 32 + 52 + ... to n terms is 

पर्याय

  • \[\frac{n (n + 1) (2n + 1)}{2}\]

  • \[\frac{n (2n - 1) (2n + 1)}{3}\]

  • \[\frac{(n - 1 )^2 (2n + 1)}{6}\]

  • \[\frac{(2n + 1 )^3}{3}\]

MCQ

उत्तर

\[\frac{n (2n - 1) (2n + 1)}{3}\]

Let \[T_n\]  be the nth term of the given series.
Thus, we have:

\[T_n = \left( 2n - 1 \right)^2 = 4 n^2 + 1 - 4n\]

Now, let

\[S_n\] be the sum of n terms of the given series.
Thus, we have:

\[S_n = \sum^n_{k = 1} \left( 4 k^2 + 1 - 4k \right)\]

\[ \Rightarrow S_n = {4\sum}^n_{k = 1} k^2 + \sum 1^n_{k = 1} - 4 \sum^n_{k = 1} k\]

\[ \Rightarrow S_n = \frac{4n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + n - \frac{4n\left( n + 1 \right)}{2}\]

\[ \Rightarrow S_n = \frac{2n\left( n + 1 \right)\left( 2n + 1 \right)}{3} + n - 2n\left( n + 1 \right)\]

\[ \Rightarrow S_n = n\left[ \frac{2\left( n + 1 \right)\left( 2n + 1 \right)}{3} + 1 - 2\left( n + 1 \right) \right]\]

\[ \Rightarrow S_n = \frac{n}{3}\left[ \left( 2n + 2 \right)\left( 2n + 1 \right) + 3 - 6\left( n + 1 \right) \right]\]

\[ \Rightarrow S_n = \frac{n}{3}\left[ \left( 4 n^2 - 1 \right) \right]\]

\[ \Rightarrow S_n = \frac{n\left( 2n - 1 \right)\left( 2n + 1 \right)}{3}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Some special series - Exercise 21.4 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 21 Some special series
Exercise 21.4 | Q 9 | पृष्ठ २०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


22 + 42 + 62 + 82 + ...


1.2.5 + 2.3.6 + 3.4.7 + ...


1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

 2n3 + 3n2 − 1


Find the sum of the series whose nth term is:

(2n − 1)2


Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


1 + 3 + 7 + 13 + 21 + ...


3 + 7 + 14 + 24 + 37 + ...


4 + 6 + 9 + 13 + 18 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


If ∑ n = 210, then ∑ n2 =


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


Write the sum to n terms of a series whose rth term is r + 2r.

 

If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.


2 + 5 + 10 + 17 + 26 + ...

 

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×