Advertisements
Advertisements
प्रश्न
Find the sum of the series whose nth term is:
2n2 − 3n + 5
उत्तर
Let \[T_n\] be the nth term of the given series.
Thus, we have:
\[T_n = 2 n^2 - 3n + 5\]
Let \[S_n\] be the sum of n terms of the given series.
Now,
\[S_n = \sum^n_{k = 1} T_k\]
\[\Rightarrow S_n = \sum^n_{k = 1} \left( 2 k^2 - 3k + 5 \right)\]
\[ \Rightarrow S_n = {2\sum}^n_{k = 1} k^2 - 3 \sum^n_{k = 1} k + \sum^n_{k = 1} 5\]
\[ \Rightarrow S_n = \frac{2n\left( n + 1 \right)\left( 2n + 1 \right)}{6} - \frac{3n\left( n + 1 \right)}{2} + 5n\]
\[ \Rightarrow S_n = \frac{2n\left( n + 1 \right)\left( 2n + 1 \right) - 9n\left( n + 1 \right) + 30n}{6}\]
\[ \Rightarrow S_n = \frac{\left( 2 n^2 + 2n \right)\left( 2n + 1 \right) - 9 n^2 - 9n + 30n}{6}\]
\[ \Rightarrow S_n = \frac{4 n^3 + 4 n^2 + 2 n^2 + 2n - 9 n^2 - 9n + 30n}{6}\]
\[ \Rightarrow S_n = \frac{4 n^3 - 3 n^2 + 23n}{6}\]
\[ \Rightarrow S_n = \frac{n\left( 4 n^2 - 3n + 23 \right)}{6}\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
22 + 42 + 62 + 82 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Find the sum of the series whose nth term is:
(2n − 1)2
1 + 3 + 7 + 13 + 21 + ...
3 + 7 + 14 + 24 + 37 + ...
1 + 4 + 13 + 40 + 121 + ...
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
The sum of the series 12 + 32 + 52 + ... to n terms is
Write the sum to n terms of a series whose rth term is r + 2r.
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.