English

1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ... - Mathematics

Advertisements
Advertisements

Question

1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...

Solution

Let \[T_n\] be the nth term of the given series.
Thus, we have: \[T_n = 1 + 2 + 3 + 4 + 5 + . . . + n = \frac{n\left( n + 1 \right)}{2} = \frac{n^2 + n}{2}\]

Now, let

\[S_n\] be the sum of n terms of the given series.

Thus, we have:  \[S_n = \sum^n_{k = 1} T_k\]

\[\Rightarrow S_n = \sum^n_{k = 1} \left( \frac{k^2 + k}{2} \right)\]

\[ \Rightarrow S_n = \frac{1}{2} \sum^n_{k = 1} \left( k^2 + k \right)\]

\[ \Rightarrow S_n = \frac{1}{2}\left[ \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + \frac{n\left( n + 1 \right)}{2} \right]\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{4}\left( \frac{2n + 1}{3} + 1 \right)\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{4}\left( \frac{2n + 4}{3} \right)\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n + 4 \right)}{12}\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( n + 2 \right)}{6}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.1 | Q 5 | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


22 + 42 + 62 + 82 + ...


1.2.5 + 2.3.6 + 3.4.7 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

(2n − 1)2


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


1 + 3 + 7 + 13 + 21 + ...


1 + 3 + 6 + 10 + 15 + ...


1 + 4 + 13 + 40 + 121 + ...


4 + 6 + 9 + 13 + 18 + ...


2 + 4 + 7 + 11 + 16 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


The value of  \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

The sum of the series 12 + 32 + 52 + ... to n terms is 


Write the sum to n terms of a series whose rth term is r + 2r.

 

If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×