English

3 + 5 + 9 + 15 + 23 + ... - Mathematics

Advertisements
Advertisements

Question

3 + 5 + 9 + 15 + 23 + ...

 
Short Note

Solution

Let  \[T_n\]  be the nth term and \[S_n\]  be the sum to n terms of the given series. Thus, we have:  \[S_n = 3 + 5 + 9 + 15 + 23 + . . . + T_{n - 1} + T_n\]   ...(1) 

Equation (1) can be rewritten as: \[S_n = 3 + 5 + 9 + 15 + 23 + . . . + T_{n - 1} + T_n\]  ...(2) 

On subtracting (2) from (1), we get: 

\[S_n = 3 + 5 + 9 + 15 + 23 + . . . + T_{n - 1} + T_n \]
\[ S_n = 3 + 5 + 9 + 15 + 23 + . . . + T_{n - 1} + T_n \]
\[ 0 = 3 + \left[ 2 + 4 + 6 + 8 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]

The sequence of difference of successive terms is 2, 4, 6, 8,...
We observe that it is an AP with common difference 2 and first term 2.
Thus, we have:

\[3 + \left[ \frac{\left( n - 1 \right)}{2}\left\{ 4 + \left( n - 2 \right)2 \right\} \right] - T_n = 0\]
\[ \Rightarrow 3 + \left[ \frac{\left( n - 1 \right)}{2}\left( 2n \right) \right] = T_n \]
\[ \Rightarrow 3 + n\left( n - 1 \right) = T_n\]

Now,

\[\because S_n = \sum^n_{k = 1} T_k \]
\[ \therefore S_n = \sum^n_{k = 1} \left\{ 3 + k\left( k - 1 \right) \right\} \]
\[ \Rightarrow S_n = \sum^n_{k = 1} k^2 + \sum^n_{k = 1} 3 - \sum^n_{k = 1} k\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + 3n - \frac{n\left( n + 1 \right)}{2}\]
\[ \Rightarrow S_n = \frac{n}{3}\left[ \frac{\left( n + 1 \right)\left( 2n + 1 \right)}{2} + 9 - \frac{3}{2}\left( n + 1 \right) \right]\]
\[ \Rightarrow S_n = \frac{n\left[ n^2 + 8 \right]}{3}\]


 

  

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.2 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.2 | Q 1 | Page 18

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


22 + 42 + 62 + 82 + ...


1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

 2n3 + 3n2 − 1


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Find the sum of the series whose nth term is:

(2n − 1)2


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


1 + 3 + 7 + 13 + 21 + ...


1 + 3 + 6 + 10 + 15 + ...


4 + 6 + 9 + 13 + 18 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


If ∑ n = 210, then ∑ n2 =


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


The sum of the series 12 + 32 + 52 + ... to n terms is 


Write the sum to n terms of a series whose rth term is r + 2r.

 

If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.


2 + 5 + 10 + 17 + 26 + ...

 

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×