Advertisements
Advertisements
प्रश्न
Find the components along the x, y, z axes of the angular momentum l of a particle, whose position vector is r with components x, y, z and momentum is p with components px, py and 'p_z`. Show that if the particle moves only in the x-y plane the angular momentum has only a z-component.
उत्तर
lx = ypz – zpy
ly = zpx – xpz
lz = xpy –ypx
Linear momentum of the particle,`vecp = p_x hati + p_y hatj + p_z hatk`
Position vector of the particle, `vecr = xhati + yhatj + zhatk`
Angular momentum, `hatl = hatr xx hatp`
=`(xhati + yhatj + zhatk) xx (p_x hati + p_y hatj + p_z hatk)`
`=|(hati,hatj,hatk),(x,y,z), (p_x, p_y,p_z)|`
`l_xhati + l_yhatj + l_z hatk = hati (yp_z - zp_y) - hatj(xp_z - zp_x) + hatk (xp_y - zp_x)`
Comparing the coefficients of `hati, hatj, hatk` we get:
`((l_x = yp_z - zp_y),(l_y = xp_z -zp_x),(l_z = xp_y - yp_x))}...(i)`
The particle moves in the x-y plane. Hence, the z-component of the position vector and linear momentum vector becomes zero, i.e.,
z = pz = 0
Thus, equation (i) reduces to:
`((l_x=0),(l_y=0),(l_z=xp_y -yp_x))} `
Therefore, when the particle is confined to move in the x-y plane, the direction of angular momentum is along the z-direction.
APPEARS IN
संबंधित प्रश्न
The torque of a force \[\overrightarrow F \] about a point is defined as \[\overrightarrow\Gamma = \overrightarrow r \times \overrightarrow F.\] Suppose \[\overrightarrow r, \overrightarrow F\] and \[\overrightarrow \Gamma\] are all nonzero. Is \[r \times \overrightarrow\Gamma || \overrightarrow F\] always true? Is it ever true?
If several forces act on a particle, the total torque on the particle may be obtained by first finding the resultant force and then taking torque of this resultant. Prove this. Is this result valid for the forces acting on different particles of a body in such a way that their lines of action intersect at a common point?
When a body is weighed on an ordinary balance we demand that the arum should be horizontal if the weights on the two pans are equal. Suppose equal weights are put on the two pans, the arm is kept at an angle with the horizontal and released. Is the torque of the two weights about the middle point (point of support) zero? Is the total torque zero? If so, why does the arm rotate and finally become horizontal?
A particle of mass m is projected with a speed u at an angle θ with the horizontal. Find the torque of the weight of the particle about the point of projection when the particle is at the highest point.
Calculate the total torque acting on the body shown in the following figure about the point O.
A 6⋅5 m long ladder rests against a vertical wall reaching a height of 6⋅0 m. A 60 kg man stands half way up the ladder.
- Find the torque of the force exerted by the man on the ladder about the upper end of the ladder.
- Assuming the weight of the ladder to be negligible as compared to the man and assuming the wall to be smooth, find the force exerted by the ground on the ladder.
A rope is wound around a hollow cylinder of mass 3 kg and radius 40 cm. What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N?
State conservation of angular momentum.
Figure shows two identical particles 1 and 2, each of mass m, moving in opposite directions with same speed v along parallel lines. At a particular instant, r1 and r2 are their respective position vectors drawn from point A which is in the plane of the parallel lines. Choose the correct options:
- Angular momentum l1 of particle 1 about A is l1 = mvd1
- Angular momentum l2 of particle 2 about A is l2 = mvr2
- Total angular momentum of the system about A is l = mv(r1 + r2)
- Total angular momentum of the system about A is l = mv (d2 − d1)
⊗ represents a unit vector coming out of the page.
⊗ represents a unit vector going into the page.
Two discs of moments of inertia I1 and I2 about their respective axes (normal to the disc and passing through the centre), and rotating with angular speed ω2 and ω2 are brought into contact face to face with their axes of rotation coincident.
- Does the law of conservation of angular momentum apply to the situation? why?
- Find the angular speed of the two-disc system.
- Calculate the loss in kinetic energy of the system in the process.
- Account for this loss.