मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A 6⋅5 m long ladder rests against a vertical wall reaching a height of 6⋅0 m. A 60 kg man stands half way up the ladder. (a) Find the torque of the force exerted by the man on the ladder about the - Physics

Advertisements
Advertisements

प्रश्न

A 6⋅5 m long ladder rests against a vertical wall reaching a height of 6⋅0 m. A 60 kg man stands half way up the ladder.

  1. Find the torque of the force exerted by the man on the ladder about the upper end of the ladder.
  2. Assuming the weight of the ladder to be negligible as compared to the man and assuming the wall to be smooth, find the force exerted by the ground on the ladder.
संख्यात्मक

उत्तर

Given

Mass of the man = m = 60 kg

Ladder length = 6.5 m

Height of the wall = 6 m

(a) We have to find the torque due to the weight of the body about the upper end of the ladder.

\[\tau = 60 \times 10 \times \frac{6 . 5}{2}\sin\theta\]

\[ \Rightarrow \tau = 600 \times \frac{6 . 5}{2} \times \sqrt{\left( 1 - \cos^2 \theta \right)}\]

\[ \Rightarrow \tau = 600 \times \left( \frac{6 . 5}{2} \right) \times \sqrt{\left\{ 1 - \left( \frac{6}{6 . 5} \right)^2 \right\}}\]

\[ \Rightarrow \tau = 740  N - m\]

(b) Let us find the vertical force exerted by the ground on the ladder.

\[N_2 = mg = 60 \times 9 . 8 = 588 N\]

Vertical force exerted by the ground on the ladder = \[\mu N_2  =  N_1\]

As system is in rotational equilibrium, we have

\[\tau_{\text{net}} = 0 ............\left(\text{about O} \right)\]

\[\Rightarrow 6 . 5 N_1 \cos\theta = 60g \times \frac{6 . 5}{2}\sin\theta\]

\[\Rightarrow  N_1  = \frac{1}{2}60g\tan\theta\]

\[= \frac{1}{2}60g \times \left( \frac{2 . 5}{6} \right)    ...........\left[\text{using, }\tan\theta = \frac{2.5}{6} \right]\]

\[ \Rightarrow  N_1  = \frac{25}{2}g\]

\[ \Rightarrow  N_1  = 122 . 5  N \approx 120  N\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Rotational Mechanics - Exercise [पृष्ठ १९८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 10 Rotational Mechanics
Exercise | Q 43 | पृष्ठ १९८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

A solid cylinder of mass 20 kg rotates about its axis with angular speed 100 rad s–1. The radius of the cylinder is 0.25 m. What is the kinetic energy associated with the rotation of the cylinder? What is the magnitude of the angular momentum of the cylinder about its axis?


If several forces act on a particle, the total torque on the particle may be obtained by first finding the resultant force and then taking torque of this resultant. Prove this. Is this result valid for the forces acting on different particles of a body in such a way that their lines of action intersect at a common point?


A body is in translational equilibrium under the action of coplanar forces. If the torque of these forces is zero about a point, is it necessary that it will also be zero about any other point?


A rectangular brick is kept on a table with a part of its length projecting out. It remains at rest if the length projected is slightly less than half the total length but it falls down if the length projected is slightly more than half the total length. Give reason.


A ladder is resting with one end on a vertical wall and the other end on a horizontal floor. If it more likely to slip when a man stands near the bottom or near the top?


A particle of mass m is projected with a speed u at an angle θ with the horizontal. Find the torque of the weight of the particle about the point of projection when the particle is at the highest point.


A simple pendulum of length l is pulled aside to make an angle θ with the vertical. Find the magnitude of the torque of the weight ω of the bob about the point of suspension. When is the torque zero?


Calculate the total torque acting on the body shown in the following figure about the point O.


A flywheel of moment of inertia 5⋅0 kg-m2 is rotated at a speed of 60 rad/s. Because of the friction at the axle it comes to rest in 5⋅0 minutes. Find (a) the average torque of the friction (b) the total work done by the friction and (c) the angular momentum of the wheel 1 minute before it stops rotating.


A rope is wound around a hollow cylinder of mass 3 kg and radius 40 cm. What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N?


A particle of mass 5 units is moving with a uniform speed of v = `3sqrt 2` units in the XOY plane along the line y = x + 4. Find the magnitude of angular momentum


A particle of mass m is moving in yz-plane with a uniform velocity v with its trajectory running parallel to + ve y-axis and intersecting z-axis at z = a (Figure). The change in its angular momentum about the origin as it bounces elastically from a wall at y = constant is ______.


The net external torque on a system of particles about an axis is zero. Which of the following are compatible with it?

  1. The forces may be acting radially from a point on the axis.
  2. The forces may be acting on the axis of rotation.
  3. The forces may be acting parallel to the axis of rotation.
  4. The torque caused by some forces may be equal and opposite to that caused by other forces.

A uniform sphere of mass m and radius R is placed on a rough horizontal surface (Figure). The sphere is struck horizontally at a height h from the floor. Match the following:

Column I Column II
(a) h = R/2 (i) Sphere rolls without slipping with a constant velocity and no loss of energy.
(b) h = R (ii) Sphere spins clockwise, loses energy by friction.
(c) h = 3R/2 (iii) Sphere spins anti-clockwise, loses energy by friction.
(d) h = 7R/5 (iv) Sphere has only a translational motion, looses energy by friction.

A spherical shell of 1 kg mass and radius R is rolling with angular speed ω on horizontal plane (as shown in figure). The magnitude of angular momentum of the shell about the origin O is `a/3 R^2` ω. The value of a will be:


A rod of mass 'm' hinged at one end is free to rotate in a horizontal plane. A small bullet of mass m/4 travelling with speed 'u' hits the rod and attaches to it at its centre. Find the angular speed of rotation of rod just after the bullet hits the rod 3. [take length of the rod as 'l']


The position vector of 1 kg object is `vecr = (3hati - hatj)` m and its velocity `vecv = (3hati + hatk)` ms-1. The magnitude of its angular momentum is `sqrtx` Nm where x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×