मराठी

If Abc is a Right Triangle Right-angled at B and M, N Are the Mid-points of Ab and Bc Respectively, Then 4(An2 + Cm2) = (A) 4 Ac2 (B) 5 Ac2 (C) 5 4 a C 2 (D) 6 Ac2 - Mathematics

Advertisements
Advertisements

प्रश्न

If ABC is a right triangle right-angled at B and M, N are the mid-points of AB and BC respectively, then 4(AN2 + CM2) =

पर्याय

  • 4 AC2

  •  5 AC2

  • \[\frac{5}{4} {AC}^2\]
  • 6 AC2

MCQ

उत्तर

M is the mid-point of AB.

∴ \[BM = \frac{AB}{2}\]

N is the mid-point of BC.

∴\[BN = \frac{BC}{2}\]

Now,

`AN^2+CM^2=(AB^2+(BC)^2)+((AB)^2+BC^2)`

`=AB^2+BC^2+1/4AB^2+BC^2`

`=5/4(AB^2+BC^2)`

`⇒ 4(AN^2+CM^2)=5AC^2`

Hence option (b) is correct.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Triangles - Exercise 7.10 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 7 Triangles
Exercise 7.10 | Q 18 | पृष्ठ १३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×