मराठी

If the sides of a parallelogram touch a circle in following figure, prove that the parallelogram is a rhombus. - Mathematics

Advertisements
Advertisements

प्रश्न

If the sides of a parallelogram touch a circle in following figure, prove that the parallelogram is a rhombus.

बेरीज

उत्तर


From A, AP and AS are tangents to the circle.

Therefore, AP = AS   ...(i)

Similarly, we can prove that:

BP = BQ  ...(ii)

CR = CQ  ...(iii)

DR = DS   ...(iv)

Adding,

AP + BP + CR + DR = AS + DS + BQ + CQ

AB + CD = AD + BC

Hence, AB + CD = AD + BC.

But AB = CD and BC = AD   ...(v) (Opposite sides of a ||gm)

Therefore, AB + AB = BC + BC

2AB = 2BC

AB = BC  ...(vi)

From (v) and (vi)

AB = BC = CD = DA

Hence, ABCD is a rhombus.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Tangents and Intersecting Chords - Exercise 18 (A) [पृष्ठ २७५]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 18 Tangents and Intersecting Chords
Exercise 18 (A) | Q 8 | पृष्ठ २७५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×