मराठी

In a ∆Abc, ∠A = 90°, Ab = 5 Cm and Ac = 12 Cm. If Ad ⊥ Bc, Then Ad = 13 2 C M 60 13 C M 13 60 C M 2 √ 15 13 C M - Mathematics

Advertisements
Advertisements

प्रश्न

In a ∆ABC, ∠A = 90°, AB = 5 cm and AC = 12 cm. If AD ⊥ BC, then AD =

पर्याय

  • \[\frac{13}{2}cm\]

  • \[\frac{60}{13}cm\]
  • \[\frac{13}{60}cm\]
  • \[\frac{2\sqrt{15}}{13}cm\]
MCQ

उत्तर

Given: In ΔABC `∠ A=90^o, AD⊥ BC`,, AC = 12cm, and AB = 5cm.

To find: AD

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.

In ∆ACB and ∆ADC,

\[\angle C = \angle C\]         (Common)
 
\[\angle A = \angle ADC = 90^\circ\]
∴ ∆ACB ~ ∆ADC     (AA Similarity)
`(AD)/(AB)=(AC)/(BC)`
`AD=(ABxxAC)/BC`
`AD=(12xx5)/(13)`
`AD=60/13`
We got the result as `b`
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Triangles - Exercise 7.10 [पृष्ठ १३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 7 Triangles
Exercise 7.10 | Q 13 | पृष्ठ १३२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×