मराठी

In a ∆Abc, Perpendicular Ad from a and Bc Meets Bc at D. If Bd = 8 Cm, Dc = 2 Cm and Ad = 4 Cm, Then (A) ∆Abc is Isosceles (B) ∆Abc is Equilateral (C) Ac = 2ab (D) ∆Abc is Right-angled at a - Mathematics

Advertisements
Advertisements

प्रश्न

In a ∆ABC, perpendicular AD from A and BC meets BC at D. If BD = 8 cm, DC = 2 cm and AD = 4 cm, then

पर्याय

  •  ∆ABC is isosceles

  • ∆ABC is equilateral

  • AC = 2AB

  • ∆ABC is right-angled at A

MCQ

उत्तर

Given: In ΔABC,`AD ⊥ BC`, BD = 8cm, DC = 2 cm and AD = 4cm.

In ΔADC,

`AC^2=AD^2+DC^2`

`AC^2=4^2+2^2`

`AC^2=20`..............(1)

Similarly, in ΔADB

`AB^2=AD^2+BD^2`

`AB^2=4^2+8^2`

`AB^2=80`......................(2)

Now, In ΔABC

\[{BC}^2 = \left( CD + DB \right)^2 = \left( 2 + 8 \right)^2 = \left( 10 \right)^2 = 100\]

and

\[{AB}^2 + {CA}^2 = 80 + 20 = 100\]
\[\therefore {AB}^2 + {CA}^2 = {BC}^2\]

Hence, triangle ABC is right angled at A.

We got the result as (d)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Triangles - Exercise 7.10 [पृष्ठ १३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 7 Triangles
Exercise 7.10 | Q 23 | पृष्ठ १३६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×