मराठी

In δAbc, Ab = 12 Cm and Ac = 9 Cm. If M is the Mid-point of Ab and a Straight Line Through M Parallel to Ac Cuts Bc in N, What is the Length of Mn? - Mathematics

Advertisements
Advertisements

प्रश्न

In ΔABC, AB = 12 cm and AC = 9 cm. If M is the mid-point of AB and a straight line through M parallel to AC cuts BC in N, what is the length of MN?

बेरीज

उत्तर


MN || AC and M is mid-point of AB

Therefore, N is mid-point of BC

Hence, MN = `(1)/(2)"AC" = (9)/(2)"cm"` = 4.5cm.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Mid-point and Intercept Theorems - Exercise 15.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 15 Mid-point and Intercept Theorems
Exercise 15.1 | Q 2

संबंधित प्रश्‍न

ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see the given figure). AC is a diagonal. Show that:

  1. SR || AC and SR = `1/2AC`
  2. PQ = SR
  3. PQRS is a parallelogram.


Fill in the blank to make the following statement correct:

The triangle formed by joining the mid-points of the sides of a right triangle is            


In the given figure, `square`PQRS and `square`MNRL are rectangles. If point M is the midpoint of side PR then prove that,

  1. SL = LR
  2. LN = `1/2`SQ


D, E, and F are the mid-points of the sides AB, BC and CA of an isosceles ΔABC in which AB = BC.

Prove that ΔDEF is also isosceles.


In Δ ABC, AD is the median and DE is parallel to BA, where E is a point in AC. Prove that BE is also a median.


Prove that the straight lines joining the mid-points of the opposite sides of a quadrilateral bisect each other.


In ΔABC, P is the mid-point of BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R. Prove that: AP = 2AR


Side AC of a ABC is produced to point E so that CE = `(1)/(2)"AC"`. D is the mid-point of BC and ED produced meets AB at F. Lines through D and C are drawn parallel to AB which meets AC at point P and EF at point R respectively. Prove that: 4CR = AB.


D, E and F are the mid-points of the sides BC, CA and AB, respectively of an equilateral triangle ABC. Show that ∆DEF is also an equilateral triangle.


E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. Prove that EF || AB and EF = `1/2` (AB + CD).

[Hint: Join BE and produce it to meet CD produced at G.]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×