मराठी

In δAbc, D and E Are Points on the Sides Ab and Ac Respectively Such that De || Bc If Ad = 8cm, Ab = 12 Cm and Ae = 12 Cm, Find Ce. - Mathematics

Advertisements
Advertisements

प्रश्न

In ΔABC, D and E are points on the sides AB and AC respectively such that DE || BC

If AD = 8cm, AB = 12 cm and AE = 12 cm, find CE.

उत्तर

We have,

AD = 8cm, AB = 12 cm

∴ BD = AB – AD

= 12 – 8

⇒ BD = 4 cm

And, DE || BC

Therefore, by basic proportionality theorem, we have,

`"AD"/"DB"="AE"/"CE"`

`rArr8/4=12/"CE"`

`rArr"CE"=(12xx4)/8=12/2`

⇒ CE = 6cm

∴ CE = 6cm

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Triangles - Exercise 7.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 7 Triangles
Exercise 7.2 | Q 1.05 | पृष्ठ १९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In ΔABC, D and E are points on the sides AB and AC respectively such that DE || BC

If AD = 4, AE = 8, DB = x – 4, and EC = 3x – 19, find x.


In a ΔABC, D and E are points on the sides AB and AC respectively. For  the following case show that DE || BC

AB = 2cm, AD = 8cm, AE = 12 cm and AC = l8cm.


D and E are the points on the sides AB and AC respectively of a ΔABC such that: AD = 8 cm, DB = 12 cm, AE = 6 cm and CE = 9 cm. Prove that BC = 5/2 DE.


Two vertical poles of height 9m and 14m stand on a plane ground. If the distance between their feet is 12m, find the distance between their tops. 


In ΔABC, D is the midpoint of BC and AE⊥BC. If AC>AB, show that `AB^2= AD^2+1/4 BC^2 −BC.DE ` 


In fig., line BC || line DE, AB = 2, BD = 3, AC = 4 and CE = x, then find the value of x


ABCD is a trapezium in which AB || DC and P and Q are points on AD and BC, respectively such that PQ || DC. If PD = 18 cm, BQ = 35 cm and QC = 15 cm, find AD.


In figure, line segment DF intersect the side AC of a triangle ABC at the point E such that E is the mid-point of CA and ∠AEF = ∠AFE. Prove that `(BD)/(CD) = (BF)/(CE)`.


In the given figure, Sand Tare points on sides PQ and PR, respectively of ΔPQR such that ST is parallel to QR and SQ = TR. Prove that ΔPQR is an isosceles triangles.


Prove that If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio. In the figure, find EC if `(AD)/(DB) = (AE)/(EC)` using the above theorem.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×