मराठी

In the Given Figure, Ac ⊥ Ce and ∠A : ∠B : ∠C = 3 : 2 : 1, Find the Value of ∠Ecd. - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, AC ⊥ CE and ∠A : ∠B : ∠C = 3 : 2 : 1, find the value of ∠ECD.

थोडक्यात उत्तर

उत्तर

In the given figure, AC ⊥ CE and ∠A : ∠B:∠C = 3:2:1. We need to find the value of ∠ECD 

Since, 

 ∠A : ∠B:∠C = 3:2:1

Let, 

∠A = 3x

 ∠B = 2x

 ∠C = x

Applying the angle sum property of the triangle, in ΔABC, we get,

 ∠A + ∠B +  ∠C = 180°

3x + 2x + x = 180°

6x = 180°

`x = (180°)/6 `

`x = 30°`

 Thus,

 ∠A = 3x = 3(30°) = 90°

 ∠B = 2x = 2 (30°) = 60°

 ∠C = x = 30°

Further, BCD is a straight line. So, applying the property, “the angles forming a linear pair are supplementary”, we get,

 ∠C +  ∠ACE +  ∠ECD = 180°

 ∠EDC = 30° + 90° = 180°

 ∠ECD + 120° = 180°

 ∠ECD = 180° - 120°

 ∠ECD = 60°

Therefore, ∠ECD = 60°.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Triangle and its Angles - Exercise 11.2 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 11 Triangle and its Angles
Exercise 11.2 | Q 4 | पृष्ठ २०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×